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ABSTRACT

Visual Word Uncertainty also referred to as Soft Assignment
is a well established technique for representing images as his-
tograms by flexible assignment of image descriptors to a vi-
sual vocabulary. Recently, an attention of the community
dealing with the object category recognition has been drawn
to Linear Coordinate Coding methods. In this work, we fo-
cus on Soft Assignment as it yields good results amidst com-
petitive methods. We show that one can take two views on
Soft Assignment: an approach derived from Gaussian Mix-
ture Model or special case of Linear Coordinate Coding. The
latter view helps us propose how to optimise smoothing fac-
tor of Soft Assignment in a way that minimises descriptor re-
construction error and maximises classification performance.
In turns, this renders tedious cross-validation towards estab-
lishing this parameter unnecessary and yields it a handy tech-
nique. We demonstrate state-of-the-art performance of such
optimised assignment on two image datasets and several types
of descriptors.

Index Terms— Image classification, soft assignment,
coordinate coding, descriptor reconstruction error, bags-of-
words

1. INTRODUCTION

Transforming local image descriptors into histograms lies at
a heart of the object category recognition. The search for ap-
propriate coding schemes expressing optimally content of im-
ages has been a subject of recent activity in the community. A
number of methods have been proposed up-to-date including
Hard and Soft Assignment [1], family of Linear Coordinate
Coding [2] entailing Sparse Coding [3] and Local Coordinate
Coding [4], and approaches like Fisher Kernels [5] or Super
Vector Coding [6].

Hard Assignment associates each descriptor vector with
the nearest visual word of a given dictionary. Whilst this pro-
vides with a reasonable expressive power, a single descriptor
belongs to only one closest word in a dictionary. This yields a
high quantisation error. Soft Assignment mitigates this effect
by allowing soft contribution of each descriptor to its closest
words in a dictionary. This was initially achieved by a crude
heuristic like assigning a given descriptor to k-nearest words,

all with equal weights. Subsequently, Visual Word Uncer-
tainty [1] was found a more appropriate weighting scheme,
though, with one inconvenient parameter to evaluate in n-fold
classification on validation data, i.e. fivefold cross validation
results in 5x more computations. To further reduce quantisa-
tion errors, Linear Coordinate Coding [2] was proposed. It
expresses each descriptor vector as a sparse linear combina-
tion of neighbouring dictionary anchors. L1 regularisation
norm over assignments favours only a small subset of activa-
tions leading to sparsity. Also, Sparse Coding [3] with Spatial
Pyramid Match and the maximum pooling produced attractive
results.

In this paper, we bridge the gap in understanding of Soft
Assignment (SA) in the context of Linear Coordinate Cod-
ing (LCC) as the first approach can be viewed as a particu-
lar subset of solutions of the latter, provided no sparsity is
forced. We also relate such weighting scheme to Compo-
nent Membership Probabilities of Gaussian Mixture Models
(GMM) [7]. Next, we exploit foundations of LCC to find an
optimal smoothing factor for SA yielding lower quantisation
errors. We show it leads to top classification results on two
datasets. Also, we demonstrate that using GMM with multi-
ple variances results in a higher reconstruction error suggest-
ing full-parameter GMMs [7] are more suitable to work with
other techniques, i.e. Fisher Kernels [5].

2. SOFT ASSIGNMENT AND RELATION TO GMMS.

For a Mixture of K Gaussian functions and mixing probabil-
ities, one can express parameters of GMM [7] to estimate as
θ = (θ1, ..., θK) = ((p1,m1,σ1), ..., (pK ,mK ,σK)) and
address density estimation problem by optimising:

Λ(X; θ) =

N∏
n=1

K∑
k=1

pkg(xn;mk,σk) (1)

K denotes number of components, pk∈{1,..,K} are compo-
nent mixing probabilities, mk are Gaussian means, σk are
component deviations, and xn∈{1,..,N} are the descriptors of
a dataset. In turns, the membership probability of component
k being induced given descriptor xn with index n is:

p(k|n) =
pkg(xn;mk,σk)∑K

k′=1 pk′g(xn;mk′ ,σk′)
(2)



However, if parameters to estimate are θ = (θ1, ..., θK) =
((m1, σ), ..., (mK , σ)), the density estimation cost function
can be rewritten as:

Λ(X; θ) =

N∏
n=1

K∑
k=1

g(xn;mk, σ) (3)

Therefore, the membership probability equation 2 becomes:

p(k|n) =
g(xn;mk, σ)∑K

k′=1 g(xn;mk′ , σ)
(4)

This is a well-known expression for the Soft Assignment
(SA) [1] that is used in forming histograms. For every k ∈ K,
corresponding expected value of p(k|n) over all xn of a given
image yields an entry to a k-th final histogram bin. One could
assume that finding the optimal σ is a subject to optimising
the cost in equation 3. We found that means mk produced in
such process tend to be of better quality than those estimated
by k-means leading to better results. However, σ estimated
in such way proved severely underestimated. This indirectly
suggests that full-parameter GMM given in equation 1 would
suffer from similar issue if histograms were to be built us-
ing GMM estimated σk applied to membership probabilities
in equation 2. We show empirically this is the case in the
experiment section.

3. SOFT ASSIGNMENT AND LINEAR
COORDINATE CODING

The foundations of Linear Coordinate Coding are provided
in [2]. We discuss only the formulations essential to our
work. Coordinate Coding is a pair (γ,M), where M ⊂ RD
is a set of visual words of a given dictionary and γ is a
mapping of descriptor vector x ∈ RD to a vocabulary
vector [γm(x)]m∈M ∈ RK=|M |. One can further impose∑

m γm(x) = 1 and γm(x) ≥ 0 if this is to produce a his-
togram per a descriptor vector. The approximation of x can
be expressed as: x̃ =

∑
m∈M γm(x)m. The residual error

of approximation of a descriptor vector xn can be expressed
as:

ξ2n = ‖xn −
∑

m∈M
γm(xn)m‖

2
(5)

The approximation error of all descriptors can be expressed
as expected value of terms ξ2n over all xn or simply as a sum
ξ2 =

∑
n ξ

2
n. Such defined error is equivalent to the quanti-

sation error. Therefore, plugging equation 4 into equation 5
yields a cost function we seek to minimise with respect to σ:

min
σ

N∑
n=1

∥∥∥xn − K∑
k=1

g(xn;mk, σ)∑K
k′=1 g(xn;mk′ , σ)

mk

∥∥∥2 (6)

Generally, there is a strong relation between equation 6
and Linear Coordinate Coding [2]. The latter scheme is op-
timised with respect to assignment coefficients γm(xn) to
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Fig. 1. (Top) Space of membership probabilities given
by equation 4 for three arbitrarily chosen 2D anchors with
smoothing factor (left) σ2 = 1 and (right) σ2 = 9. (Bottom)
Membership probabilities for 1D anchors for (left) equation
4 with σ2 = 0.8 and (right) equation 2 with p1 = p2 = p3,
σ2
1 = 0.04, and σ2

2 = σ2
3 = 0.8. The anchors are landmarked.

achieve a good linear combination of anchorsm approximat-
ing a given descriptor xn. Soft Assignment (SA) can be also
viewed as approximating descriptors if linear combinations
of anchorsm weighted by assignment coefficients p(k|n) are
applied to evaluate the residual error to find the optimal σ.
The assignments are taken from the space spanned by the
membership probabilities given by equation 4. Note, mem-
bership probabilities in figure 1 (top and bottom left) have
almost linear slopes (subject to well-chosen σ) and spanned
locally for descriptors falling between neighbouring spanning
anchors. This makes it somewhat similar to Local Coordi-
nate Coding [4]. However, if full GMM membership prob-
abilities (equation 2) are used as in figure 1 (bottom right),
the locality property becomes violated (red solid and green
dashed curves). Further, slopes become ill-spanned resulting
in a poor approximation of descriptors in proximity of m2.
The reconstruction emphasis is put on descriptors in proxim-
ity of the narrow peak despite these descriptors differ from
each other by poor SNR. This is why SA with full GMM per-
forms poorly. Update rule for σ based on equation 3 is closely
related to equation 6, however, the differences suggest σ has
two different meanings in case of i) the optimal reconstruc-
tion of descriptor vectors gauged by ξ2 and ii) the density
estimation. Practical optimisation of equation 6 is achieved
by applying a generic optimiser with Gradient and Hessian of
equation in question: ∂ξ

2

∂σ = [ξ2(σ+∆σ)−ξ2(σ−∆σ)]/2∆σ,
∂2ξ2

∂σ2 = [ξ2(σ+∆σ)+ξ2(σ−∆σ)−2ξ2(σ)]/(∆σ)2. Value of
∆σ depends on the descriptors used in the experiments out-
lined in section 4. It determines the quality of the gradient
approximation and is set arbitrarily to 1 and 0.001 for large
and unit norm descriptors. Similarly to GMMs [7], there is
no closed form solution for equation 6. It suffices to mention
at this stage that the cost function remains convex in σ and
that only small subset of descriptor vectors from a dataset has
to be evaluated. This is shown in the experimental section.
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Fig. 2. (Top) Cost function across large range of σ values
for grey-SIFT (left) normalised to 255 (RDSS) and (right)
with unit length (k-means). (Bottom) Uncertainty of σ on
Pascal 2010 Action Classification (left) for RDSS and (right)
k-means. Refer text for details.

4. EVALUATIONS AND CLASSIFICATION RESULTS

This section provides an experimental insight regarding the
quality of the achieved descriptor approximations and classifi-
cation performance. Tests were performed on Pascal 2010 [8]
Action Classification set (301 training, 307 validation, and
613 testing bounding boxes) and Flower 17 [9] set (3 splits
of data, each consisting of 680 training, 340 validation, and
340 testing images). For Pascal 2010, we report our results
mainly on validation set as testing set is not publicly available.
However, we also list test results of our run of the outlined
approach submitted for Pascal 2010 competition [8]. Three
variants of descriptors were used to scrutinise the behaviour
of our cost function. Grey-scale SIFT [10] were extracted on
Pascal 2010 with dense feature sampling on a regular grid.
Intervals of 8, 14, 20, and 26 pixels, and patch radii of 16, 24,
32, and 40 pixels were applied. This produced 1200 descrip-
tor vectors per image on average. For Flower 17, Opponent
SIFT [11] (at Harris Laplace locations) and Segmentation-
Based Descriptors [12] were extracted. Both descriptor vari-
ants resulted in 2300 vectors per image on average. KDA [13]
and SVM classifiers were applied interchangeably to χ2 [13]
and linear kernels formed from SA histograms optimised ac-
cording to our scheme as in section 3. Spatial Pyramid Match
(SPM) [14] with 3 levels of depth was employed. The dictio-
naries (typically K = 4000 anchors) were produced on train-
ing sets by either randomly sampling the descriptors (Random
Descriptor Set Sampling aka RDSS), by k-means, or by esti-
mating GMM parameters as in equation 3.

First, we provide with an empirical glimpse at the con-
vexity of ξ2 cost in equation 6 with respect to σ. 10 training
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Fig. 3. (Top) MAP maxima and ξ2n minima (VOC2010, k-
means, two variants of SIFT, Soft Assignment eq. 4). (Bot-
tom left) MAP maxima and ξ2n for GMM given by equation
2. (Bottom right) MAP maxima and ξ2n minima intervals on
Flower17 (RDSS vocabulary, Opp. SIFT, Seg-Based Desc.).

images were drawn at random from Pascal 2010 set as this
suffices to estimate σ well for the whole set. Both RDSS and
k-means were experimented with. Next, the reconstruction er-
ror was evaluated as a function of the smoothing factor within
a very large range. In figure 2, one can see the cost curves for
grey-scale SIFT [10] with vectors normalised to length 255
(top left) and 1 (top right). RDSS and k-means vocabularies
were applied respectively. The produced quantisation error
curves have several interesting properties: i) to the left of the
breaking point (low σ) the numerical accuracy is insufficient
to compute the ratio of Gaussians in equation 4, ii) this point
can be considered as an approximation to Hard Assignment
due to the lowest tangible value of σ iii) there exists a unique
minimum, and iv) as σ → ∞, the reconstruction error tends
to a value corresponding to the total blurring: all descriptors
are equally assigned to all K anchors.

Figure 2 illustrates how much the estimated σ varies
with a subset of the drawn descriptors for RDSS (left) and
k-means (right) vocabularies. Five-fold drawing process was
employed, each time 10 unique descriptor files (one per im-
age) were picked at random. Despite different absolute values
of the energy, the minima are located roughly at the same po-
sition (negligible uncertainty). Note k-means achieved lower
energies. Also, optimal σ for k-means and RDSS differs.

Figure 3 (top) presents MAP performance and σ estima-
tion for k-means vocabulary on Pascal 2010 Action Classi-
fication. KDA and SVM were applied to χ2 kernels. Both
MAP% and the energy ξ2n were brought to the same scale
with ’divider’ to reveal strong corelation between extrema of
both measures. Optima are marked as bulky dots on curves.



One can see the best classification performance indeed was
achieved for σ estimated according to equation 6. Plot 3 (top
left) concerns grey-scale SIFT [10] normalised to 255 with
Spatial Coordinate Coding [15].

Top right plot is based on grey-scale unit normalised
SIFT [10] and SPM (3 levels of depth). We also evaluated
RDSS dictionary concluding the computed σ was optimal.
Alas, this vocabulary gave lover results by about 0.5% MAP
compared to k-means. Soft Assignment (SA) was further
compared to Sparse Coding (SC) [3]. The same k-means
dictionary was used and 4 levels of SPM to maximise per-
formance of SC. Though, SC yielded only 48.7% whilst SA
reached 49.4% MAP.

Figure 3 (bottom left) presents MAP performance and ξ2n
achieved by SA with full parameter GMM according to equa-
tion 2. The flattening σ∗flat forces all σk ≤ σ∗flat to σ∗flat.
It was varied to show impact of non-uniform versus uniform
σk. If majority of σk become equalised, ξ2n drops resulting
in a better model. Gradually, local MAP maxima align with
the minimum of ξ2n. Varying components of GMM between
8-100K did not decrease substantially energies nor improve
MAP. Due to the issues discussed in section 3 and illustrated
on figure 1 (bottom left), optimising ξ2n for full GMM does not
offer the correct σ. Only the reduced GMM model in equation
2 follows closely the descriptor reconstruction approach.

Lastly, figure 3 (bottom right) presents MAP and ξ2n min-
ima intervals on Fower17 set with Harris Laplace Opponent
SIFT [11] and Segmentation-Based Descriptor [12]. We ob-
served KDA always worked better with χ2 and SVM with
linear kernels, thus we used such set-up. Our optimisation
scheme from equation 6 and SA from equation 4 were ap-
plied. For Opponent SIFT, the optimum σ varied between
145-155 for different subsets of 10 randomly drawn images.
The diversions from the maximum MAP (up to 0.2%) were
noted for σ estimations on less than 10 randomly picked im-
ages. Similarly, σ estimated on Segmentation Based Descrip-
tors varied between 240-258 with 0.13% uncertanty in MAP.

Our results on Pascal 2010 [8] Action Classification
amount to 62.15% MAP (average over APs of all 9 concepts
on testing set) outperforming other reported systems [8].
They were achieved by averaging multiple kernels of differ-
ent descriptor variants as in [12, 13]. Flower17 [9] resulted
in 89.3% MAP (85.4% accuracy) using Segmentation-Based
Descriptor. Multikernel learning [16] yields 86.7% accuracy.

5. CONCLUSIONS

We have presented a novel method for optimising the smooth-
ing factor σ for Visual Word Uncertainty (Soft Assignment).
It is extensively demonstrated that the reconstruction error ξ2n
has strong impact on the classification performance. We have
discussed relation of Soft Assignment to Linear Coordinate
Coding methods. Further, we demonstrated why standard
GMM cannot perform well in the descriptor reconstruction

scenario. Our endeavours led us to state-of-the-art results on
both Pascal 2010 Action Classification and Flower17 sets.
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