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Overview

We are interested in few-shot learning (FSL) on 3D skeleton sequences of
articulated body joints:

@ Many robust pose estimation methods produced many 3D skeleton datasets.
o But labeling is expensive and fast adaptation to new classes underexplored.
@ FSL must deal with temporal, viewpoint and geometric distortions.
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Figure 1: Example few-shot action recognition pipeline.
@ We train the Encoding Network. The comparator captures the similarity between
query-support pairs.
@ The loss £(-) — 0 if query-support pair has the same class labels. For pairs with
non-matching labels, £(-) — & (FSL learns what is similar/dissimilar).
@ Testing: given a set of support sequences-labels, £(-) decides which one matches the query.
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Overview (cont.)

Formally, our similarity learning minimizes the empirical loss £(-) and some
regularization term (-, -) expressing our belief about the model:

Z é(dQ(‘I’na ‘I’:v,)7 Yn) + B (P, ‘I’;L)

Query: ¥ = [4q,...,1,] € R with 7 temporal frames (or blocks).
Support: W' = [4],...,9",] € R¥*7 with 7’ temporal frames (or blocks).

However, distance d(-, ) is suboptimal for matching temporal sequences:
o Temporal location and speed of actions vary.
o Different viewpoints or geometric distortions..
@ High intra-class variance: no two sequences are identical.
o Same/different actors never perform the same action exactly the same way.

o So-called (Soft-)Dynamic Time Warping (DTW) overcomes the temporal
localization and speed issues®. We build on it.

LCuturi, M., & Blondel, M. (2017, July). Soft-DTW: a differentiable loss function for
time-series. In International conference on machine learning (pp. 894-903). PMLR.
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Related work

Comparison of the Euclidean distance vs. (Soft-)Dynamic Time Warping (DTW):

Dynamic Time Warping=
wr§ fﬁ (ﬁ (ﬁ <B <B: (ﬁ ﬂh/’r /good temporal matching
query RERER R xEucIldean distance=
support ¢1 D U S S ‘ w bad temporal matching
(§ fﬁ {-ﬁ ‘T{ <E (ﬁ ﬁ) ﬁ) Euclldean Why?
Because dprw < dBuctid
+F ffi (ﬁ <ﬁ & <‘ﬁ +® ff’«m e T (a Yine)
query - DTW (distance accumulated
1/;1 " - R Vi d along the path, t moves
support - along the path)
r§ fﬁ (ﬁ (ﬁ <ﬁ (ﬁ ﬁ) ﬂ) szZ (1/’[«, 'l”l) Euclidean dist. accumulated along just the line.

Figure 2: Euclidean dist. (top) vs. DTW (bottom). Corresponding matching paths (right)

@ The Euclidean distance naively compares features of corresponding frames of
two sequences W and W',

o DTW (bottom) matches human poses better by taking into account temporal
location and speed variations. DTW transportation plan: step |, \, —

o DTW performs ‘better’ matching (see the green matching path on the right)
by factoring out temporal variations. The dark blue path is suboptimal
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e
Motivation (uncertainty-DTW)

However, sequences ¥ and ¥’ suffer from the observation noise.
Compare uncertainty-DTW vs. soft-DTW under the noise (indicated in gray):
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Figure 3: Soft-DTW. (top) vs. uncertainty-DTW (bottom).

o Blue path (right) takes uncertainty into account; green path does not.
@ Thus, the blue path provides more robust distance for similarity learning.
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S
Approach
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Figure 4: Soft-DTW vs. uncertainty-DTW.

Uncertainty-DTW models the uncertainty for each frame (or temporal block).
Each path is a solution to the Maximum Likelihood Estimation (each node is
Gaussian with variance): [T, V()3 ¢;n(t)’a721(t)m(t))

MLE ‘explains’ the distances on the path by the modelled distribution.
Log-likelihood results in dypTw (see derivations in the paper).

Additionally, Q is penalty for selecting (trivially) large uncertainty.
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S
Derivation of uDTW

We proceed by modeling an arbitrary path II; from the transportation plan of
A; .+ as the following Maximum Likelihood Estimation (MLE) problem:

argmax  [] pllem—4nl, ommn), (1)

{omn}(m,nyem; (m,n)€eIl;

where p may be some arbitrary distribution, o are distribution parameters, || - || is
an arbitrary norm. For the Normal distribution A/, we have:

R T @
{omn}(m,nyem;, (m,n)€T;
. [%bm =713
= argmin Z d log(o) + Tﬂna (3)

{omn}m,nyen; (m,n)€ell;

where d’ is the length of feature vectors ).

Koniusz ANU & Data61/CSIRO August 17, 2023



Approach

Our uncertainty-DTW can capture ‘alternative’ paths:

sDTWW 0.01 (b) sDTW,=0.1 (c) uDTW,—g.01 (d) uDTW,—0.1 (&) uncertainty

Flgure 5: With hlgher v controlling softness, in (b) & (d) more paths become ‘active’. In
(c) & (d), uDTW has two possible routes due to uncertainty modeling.

o Soft-DTW (plots (a) & (b)) produces single paths (‘fuzziness is due to
soft-maximum operator selecting the best path).

o Uncertainty-DTW (plots (c) & (d)) produces alternative paths merging
where the uncertainty o, ,,, (plot (e)) is large.

® Op.m is obtained from a small MLP called SigmaNet (we have observed it is
better to optimize over SigmaNet parameters than directly over oy, .
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Pipeline: Supervised Few-shot Action Recognition

query X OsGe 00
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Figure 6: Supervised few-shot action recognition with the uncertainty-DTW (uDTW).

Our model contains:
o Encoding Network (backbone); each sequence is split into temporal blocks.
o Comparator has access to each temporal block features 11, ..., %, and

1, ..., YL, of query-support pairs.

SigmaNet produces the uncertainty variable 3

The objective function is a trade-off between the empirical loss ¢(-) with
uncertainty-DTW and the uncertainty penalty (regularization) €Q(-).
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Pipeline: Unsupervised Few-shot Action Recognition
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Unsupervised Comparator with DL+uDTW
Figure 7: Unsupervised few-shot action recognition with the uncertainty-DTW (uDTW).

o We train Encoding Network (backbone) but in an unsupervised manner.

o Comparator learns a dictionary (DL) which contains ‘abstract’ dictionary
sequences (clusters).

@ LcSA is an encoder of sequences into the dictionary space.

o Interaction between LcSA encoder and dictionary can be thought as soft
clustering that uses the uncertainty-DTW distance.

@ At the test time, the nearest neighbor on encoded sequences is used to match
support sequence (known labels) with the query (unknown label).
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Pipeline: Forecasting the Evolution of Time Series

X MLP
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Forecasting the evolution of time series+uDTW

Figure 8: Predicting Evolution of Time Series.

o Variable x is the first half of time series, and x’ is the second half of time
series.

@ MLP learns to predict x” with MLP+uncertainty-DTW from x.
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Results: Forecasting the Evolution of Time Series

o Given the first part of a time series, we

o train 3 multi-layer perception (MLP) to predict the remaining part
o use the Euclidean, sDTW or uDTW distance per MLP
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(a) ECG200 (b) ECG5000
Figure 9: We use ECG200 and ECG5000 in UCR archive, and display the prediction

obtained for the given test sample and the ground truth (GT). Oftentimes, we observe
that uDTW helps predict the sudden changes well.
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Results: Few-shot Action Recognition

For more details, results and discussions, please refer to our paper.

Table 1: Evaluations on NTU-60. Table 2: Evaluations on NTU-120.
#classes 10 20 30 40 50 #classes 20 40 60 80 100
Supervised Supervised

MatchNets 46.1 48.6 53.3 56.3 58.8 MatchNets 205 234 251 287 30.0
ProtoNet 472 511 543 589 630 ProtoNet 217 240 259 292 321

TAP 542 573 617 647 683 TAP 31.2 377 409 445 473
" Euclidean 385 422 451 483 509  Euclidean 187 213 249 275 30.0
sDTW 53.7 56.2 60.0 639 67.8 sDTW 303 372 39.7 440 4638
sDTW div. 54.0 57.3 621 657 69.0 sDTW div. 30.8 38.1 40.0 447 473
uDTW 56.9 612 648 683 724 uDTW 322 39.0 412 453 49.0
Unsupervised Unsupervised
Euclidean 209 237 263 30.0 331 Euclidean 135 163 20.0 249 26.2
sDTW 356 452 533 56.7 617 sDTW 20.1 253 320 369 409
sDTW div. 36.0 46.1 54.0 572 620 sDTW div. 20.8 26.0 332 375 423
uDTW 37.0 483 553 58.0 633 uDTW 22.7 283 359 394 440

sDTW div.: Blondel et al., Differentiable divergences between time series. AISTATS 2021.
TAP: Bing Su & Ji-Rong Wen, Temporal Alignment Prediction for Supervised Representation
Learning and Few-Shot Sequence Classification, /CLR 2022.
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Motivation (JEANIE)

query 4T £y Q Matching query-support features under varying
L viewpoints of 3D poses:
SUP‘FI”(/)Tt @lnﬁeﬁ T £ @ (top) rotate a support trajectory onto a query

trajectory (naive).

query o Taf Tagp @ (bottom) advanced viewpoint alignment strategy is
sup‘gort g " g needed: locally follow complicated non-linear paths
o but assume viewpoints change smoothly in time,
. L. e.g., no large abrupt changes along the path.
To learn similarity /dissimilarity between pairs of query-support sequences:

o find a smooth joint viewpoint-temporal alignment.
@ minimize/maximize djeanie for same/different support-query labels.
A viewpoint invariant distance can be defined as:

dinv(‘Il"II/):,YE,léTd(ﬂY(lIl)aﬁyl(lIﬂ))a (4)
o T is a set of transformations required to achieve a viewpoint invariance.
e T may include 3D rotations to rotate one trajectory onto the other (or each
3D pose onto the corresponding 3D pose).

@ Such global viewpoint alignment of two sequences or local alignment of 3D
poses are suboptimal. T" may realise better transformation strategies...
Thus, we propose a FSAR approach that learns on skeleton-based 3D body joints

by Joint tEmporal and cAmera viewpoiNt allgnmEnt (JEANIE).
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e
JEANIE

Sequences that are being matched might have been captured under different

camera viewpoints or subjects might have followed different trajectories.
Thus, to model 3D pose variations, we:

@ exploit the projective camera geometry.

@ propose the smooth path in DTW should simultaneously perform temporal & viewpoint

alignment

JEANIE has the transportation plan A’where apart of steps |, Y\, — for
temporal axes (indicated as 7 and 7'), JEANIE can also take additional steps on
the viewpoint axis, e.g., step inward, inward-down, etc..
Thus, apart from temporal block counts 7 (query) & 7' (support), for query
sequences we simulate K =2n,,+1, K'=2n4;+1 camera viewpoints (or Euler
angles). We have:

@ possible 74, left and 74, right steps from the initial camera azimuth,
@ and 74+ up and 7ny;; down steps from the initial camera altitude.

P

(Aeaz ;Aealt)
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e
JEANIE (cont.)

",

JEANIE is given as:

dJEAN|E(\I’, ‘I’/) :SoftMinv <A, D(‘I’, \I’/)> 3 (5)
AcA’

KxK'xrxr! _
where D e R ™7 = [dpase (Wi, k k' )] (mon)eZox., -

(t,t\n) ,
(k,k )EIKXIK/

Algorithm 1 Joint tEmporal and cAmera viewpoiNt allgnmEnt (JEANIE).
Input (forward pass): @, %', v>0, dyase(*, +), t-max shift.

o Suppose we tackle the

L =00, Pty =dusse(tPn 1, 1), V€ {1, oy} camera viewpoint alignment
2 I ={=4,.,0,.., ¢} x {(0,1),(1,0), (1, 1)} . .

3 forteZ,: in just camera azimuth.

4: fort'cZ, . . . .

s: 141 or t'A L @ The maximum viewpoint

6 forne{=nonk: , change from block to block
7 Tt = Gbase(Yn, 1, Pg,) + SoftMin, ([T—n—i,tﬂ‘,t’—k](i,j,k)eﬂ)

) is t-max shift (smoothness).
Output: SoftMin., ([rnm,f],,e(,,, ,,,,, ,,;)

o We initialize all possible origins of shifts in accumulator r;, 1 ;.
o A phase related to soft-DTW (temporal-viewpoint alignment) takes place.

o We choose the path with the smallest distance (of matched features) over all
possible viewpoint ends by selecting a soft-minimum over [ry, - +/|ne{—n.,....n}-

Koniusz ANU & Data61/CSIRO August 17, 2023



e
View-wise Soft-DTW vs. FVM vs. JEANIE

(a) soft-DTW (view-wise) (b) FVYM (c) JEANIE(1-max shift)

Figure 10: The support & query sequence are shown in green & black respectively.

o soft-DTW finds each individual alignment per viewpoint fixed throughout
alignment: dghortest =4.08. Too pessimistic!

o FVM is a greedy matching algorithm which leads to unrealistic zigzag
path: dpym =2.53. Overoptimistic!

o JEANIE (1-max shift) is able to find smooth joint viewpoint-temporal
alignment between support and query sequences: djeanie=3.69.

Free Viewpoint Matching (FVM) seeks the best local viewpoint alignment for every step of

DTW, thus resulting in a non-smooth path along viewpoint axis in contrast to JEANIE.
Koniusz ANU & Data61/CSIRO August 17, 2023



Pipeline: further details
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Figure 11: Our 3D skeleton-based FSAR with JEANIE.
o Generate multiple rotations by (A, Ad,) of each query by
o Euler angles (baseline approach) or
o simulated camera views (gray cameras) by camera shifts (Af,., Afq)
o Temporal-viewpoint alignment takes place in 4D space (we show a 3D case).
o Temporally-wise, JEANIE starts from the same t=(1,1) & finishes at
t=(7,7).

o Viewpoint-wise, JEANIE starts from every possible camera shift &
finishes at one of possible camera shifts.

o At each step, the step may be no larger than (+£A6,., £A0,+) to prevent
erroneous alignments.
Koniusz
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Results & Discussions
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Results & Discussions (cont.)

Table 3: Results on NTU-120 (multiview
classification).

Training view bott. left left & cent.

bott. bott.& cent. _left
“Testing view cent. top top cent. right right
100/same 100 (baseline) 74.2 73.8 75.0 58.3 57.2 68.9
100/same 100 (FVM) 79.9 78.2 80.0 65.9 63.9 75.0
100/same 100 (JEANIE) 815 79.2 839 _ 677 669 _ 792
100/novel 20 (baseline) ~ 58:2° 58.2 61.3 51.3 47.2 53.7
100/novel 20 (FVM, 66.0 65.3 68.2 58.8 53.9 60.1
100/novel 20 (JEANIE) ~ 67.8 65.8 70.8 59.5 55.0  62.7

Discussion.

o Few-shot multi-view classification.

Table 4: Experiments on 2D and 3D
Kinetics-skeleton.

soft-DTW FVM JEANIE JEANIE

S2GC
(no soft-DTW) +Transf.

2D skel.

32.8
3D skel.

347 - . .
35.9 396 441 503 525

o Adding more camera viewpoints helps.
o Even with (novel 20) (not used in training), we still achieve 62.7% & 70.8%.
@ JEANIE on the Kinetics-skeleton dataset.

o We use Euler angles.
o 3D outperforms 2D by 3-4%.

o With Transformer, JEANIE further boosts results by 2%.

Koniusz
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Few-shot Keypoint Detection with Uncertainty Learning for Unseen Species

e Motivation

» Humans learn to recognize/generalize keypoints fast.
» We are inspired by few-shot learning methods such as
RelationNet, ProtoNet, Matching Net., Siamese Net.

e Applications

» Fine-Grained Visual Recognition (FGVR).
» Semantic Alignment (SA).
» Semi-automatic labelling.
» Animal behavior analysis.

e Challenges

» Generalizing based on a few of samples is hard.

» Large amounts of interfering noise and similar
local patterns affect keypoint detection.

> Inherent keypoint uncertainty, existed in
GTs/Predictions.

Predicted keypoints
with uncertainty

Suruaed| Ajureraddun
PIM @ISA

- . R g
© A N
g :
o
=
-

Aligned

-Beak \ e
. = 49 "v— P o \\\‘ ‘
-Right eye o |7 s — %N
3 = g il
*Belly o l- ~ \
-Right wing X g < 4 td

i i - Rectified image
Body part features Barn swallow & TPS warp with
uncertainty

Query image
(a) FGVR Task (b) Semantic Alignment Task

e Contributions

> A flexible few-shot keypoint detector (FSKD) is proposed.

» We model both localization and semantic uncertainty within our
localization networks (UC-GBL, muti-scale UC-GBL).

» We employ low-quality auxiliary keypoints during learning.

» Our FSKD model can successfully detect novel keypoints, and
be applied to FGVR and SA.

diep SdlL




Proposed Approach

® Problem Definition & Pipeline

Given N support keypoints and K support images, a problem of detecting the corresponding keypoints in a query
Image is dubbed as N-way K-shot detection problem.

=g - = Auxiliarv keypoints training
=) =p Support keypoint N descriptors = ——— — — — \
N Encoder prototypes o — |
;n,*’; / ’j wee % |
S5 A Support feature = |Aux1lmry I
Support image & keypoints / = Miibermediats g . I |
1 feature \ 53 | '
| | 3 W I
[}
SD Head Feature =
- Modulator m B ) : | Auxiliary keypoint l
Keypoint descritpors \ descritpors I
‘ * Query feature
Query image = —— : :
/ (e} ,] // g, : / Semantic distinctiveness (SD) e ’
Input 2 1 = g -
= e
T

Max prob.

I S Sofimax + S T kY UC-GBL 73 2
l ('r_l.d QE Grid probablllty_ - _\ — — — o |cassification I Ky . S w
I Classifier P M loss I S \)‘, § % Z
=
I ,5-}-% Multivariate -« I = g
Gaussian vuc-GBL, (Pv.X)| 2
| | | Offset , Extract Offsel\cctor . I s, = =
Regressor 3 :
g > <ETE chrc§§|on I ﬁ;'\\ :1 a
l K t A loss I \Y y =, 5
eypoin Extract UC-GBL - = A
l descritpor Cov ‘5 &Reshape [ arent matrix ! : g <
| ovar. " ” > = Inverse covariance I 53 -k
k , Branch Q Z_] UC-GBL I =

Output Predicted keypoints
with uncertainty



FSKD Experiments

Base and novel keypoint splits One-shot novel keypoint detection
Dataset Base Keypoint Set Novel Keypoint Set Method putinal Fose Dataget CUB NABird
Cat Dog Cow Horse Sheep Avg
: two ears, nose, four legs, _
Animal o two eyes, four knees Baseline 27.30 24.40 19.40 1825 2122 22.11 66.12 39.14
Jour paws Problntr 28.54 2320 19.55 17.94 17.03 2125 68.07 48.70
beak, belly, back, breast, . _ TFA 19.40 20.00 20.85 17.99 19.54 19.56 50.12 30.16
CUB  crowi, 1o legs Hape forehead, two eyes, ProtoNet 19.68 16.18 14.39 12.05 15.06 1547 51.32 36.65
g ’ ' two wings RelationNet 22.15 17.19 1547 13.58 16.55 16.99 56.59 34.02
throat, tail WG (wlo Att)  21.86 17.11 16.19 1634 16.13 17.53 52.66 3331
Bk Bl haiek: bR WG 2247 1939 1682 1640 1694 18.40_S475._34.19 PCK scores
NABird = 2T " two eyes, two wings FSKD (rand) (Ours) 4605 40.66 37.55 38.09 3150-3877 7790 5407~ (the higher
crown, nape, tail FSKD (default) (Ours) 52.36 47.94 44.07 4277 36.60_ 4475 77.89 56.04 ' ’

- —-—

FSKD with| Animal CUB NABird DeepF.2,»” AwA .
ResNet50 ’44.75 77.89 56.04  33.04/64.76 (27.75) \

HRNet-W32| 47.61 7824 56.89 33.67\ 70.99 H
HRNet-W48| 48.81 79.45 57.11 3429  72.20 )
48 Results on Animal - Results on CUB 57 Results on N—A;i:d
. Single N Single . Single
44 W Pair 79 . Pair 56 . Pair
Triplet Triplet | s5 Triplet
1 54
77 53
52
76
51

75 50
random exhaust default random exhaust default random exhaust default
Types of interpolation path




Downstream Tasks

® Few-shot Fine Grained Recognition ® Semantic Alignment
» Pose normalization, i.e., using the concatenation 5 A —1
Co T T
of body part features for FGVR. T = R +A)\D P I;' 9
P 03%3 03
» We build UKPs (Universal Keypoint Prototypes) during
training, thus in testing no longer needs support keypoints as @ P is support keypoints, P’is predicted query
reference. keypoints, D is diagonal matrix of ‘uncertainty
Strength’.
Datasets  Models I-shot  5-shot all-shot
Proto [42] 23.03 3805  41.79
Proto+BP [31] 1843 3363  38.34
Proto+bbN [46] 2397 4022 4461
CUB Proto+PN [46] 3592 5866 6351
Ours 3745 61.22  66.25
Ours+AuxKps 38.04 61.74 66.37
. Proto+PN [46] 26.17 50.55  60.03
NABIrd - oirs 27.68 51.81  61.56

AuxKps means adding auxiliary keypoints to form

augmented prototypes for classification. . _ _
Code: https://github.com/AlanLuSun/Few-shot-keypoint-detection



Transductive Few-shot Learning with Prototype-based Label
Propagation by Iterative Graph Refinement

* Prototype

O
.*.
O

Nearest
Neighbour
decision

Labeled sample

O
ol

|
Optimal
decision

Strong connection

Weak connection ---cceece----

Fixed weights

Prototype-based methods:

1. sensitive to the large within-class
variance and low between-class
variance

2. estimate prototypes inaccurately by
the soft-label assignment alone.

Graph-based methods:

1. determined graph with noisy links

2. propagating labels based on the
graph



Method: Prototypes-based Label Propagation

Partial Assignment

Estimating Assignment

Prototypes .

Support and Query set

Updating Prototypes

Affinity Matrix

»

Propagating Label

Algorithm 1: Prototype-based Label Propagation.

Inpllt: X9 Y9 /L a, nstep
*4e = _ ]_ —_— .
Inlto Ck — |Sk| Z(mi,yi)esk :Bljk - O’

Estimating Assignment:
el
Sy ewp-|lei-e |y’
Constructing Graph:
A =2 Zig and W = ZtA_l ZIT,
Propagating Label:
N -1
Y=2/(2]Z2.+22] I-W)Z,) Z]Y:
Ugdating Protglypesi
C—({-aC+aYX,;
k—k+1

end
return y; = arg max; Y




Results

Table 1. Comparison of test accuracy against state-of-the-art methods for 1-shot and 5-shot classification. (*: inference aug., §4.2.3)

mini-ImageNet tiered-ImageNet
Methods Setting Network  l-shot 5-shot 1-shot 5-shot Table 8. Test accuracy against the state of the art in the class-
MAML [8] Inductive  ResNet-18  49.61 +092 65.72 + 0.77 - - unbalanced setting (WRN-28-10, 1- and 5-shot protocols).
RelationNet [45] Inductive ResNet-18 5248 + 0.86 69.83 + 0.68 - -
MatchingNet [47] Inductive ResNet-18 5291 +£0.88 68.88 + 0.69 - - minj-Imachet tiered-[mageNet
ProtoNet [44] Inductive ResNet-18  54.16 + 0.82  73.68 + 0.65 - -
TPN [29] transductive ~ ResNet-12  59.46 75.64 - - Methods ~ 1-shot  5-shot I-shot  5-shot
TEAM [35] transductive ResNet-18 60.07 759 - - Entropy-mm 60.4 76.2 62.9 773
Transductive tuning [6] Transductive  ResNet-12  62.35+0.66 74.53 £ 0.54 - -
MetaoptNet [24] Transductive ~ ResNet-12  62.64 + 0.61 78.63 +0.46 6599+ 0.72 81.56+0.53 PT_MAP 60.6 66.8 65.1 71.0
CAN+T[11] Transductive  ResNet-12  67.19+0.55 80.64+ 035 7321 +0.58 84.93 = 0.38 LaplacianShot  68.1 ~ 83.2 73.5 86.8
DSN-MR [43] Transductive ~ ResNet-12  64.60 £ 0.72 79.51+0.50 67.39+0.82 82.85+0.56 TIM 69.8 81.6 75.8 85.4
ODC" [34] Transductive  ResNet-18  77.20+0.36 87.11 £ 042 83.73+0.36  90.46 + 0.46 BD-CSPN 70.4 82.3 75.4 859
MCT* [21] Transductive ~ ResNet-12 7855+ 0.86 86.03 +0.42 8232 +0.81 87.36+0.50 o-TIM  69.8 84.8 76.0 87.8
EASY* [1] Transductive  ResNet-12  82.31+0.24 88.57+0.12 83.98+0.24 89.26+0.14
protoLP (ours) Transductive  ResNet-12 70,77+ 030 8085+ 016 84.60+029 8947+ 0.15 protolP (ours)” ' 73.7 " 85.2 810 890
protoLP* (ours) Transductive  ResNet-12 8435+ 024 9022 +0.11 86.27+0.25 091.19+0.14
protoLP (ours) Transductive  ResNet-18 7577 +0.29 8400+ 0.16 82.32+0.27 88.00+0.15 Table 9. Test accuracy agamst the state of the art in the class un-
protoLP* (ours) Transductive  ResNet-18  85.13 £+ 0.24 9045+ 0.11 83.05+0.25 88.62+0.14 balanced setting (ResNet-12, 1-shot protocols, CUB).
ProtoNet [44] Inductive ~ WRN-28-10 62.60 £ 020 79.97 + 0.14 - -
MatchingNet [47] Inductive =~ WRN-28-10 64.03 +£0.20 7632 +0.16 - -
SimpleSiot [50] Inductive ~ WRN-28-10 6587 +020 82.09+0.14 7090022 85.760.15 CUB _unbalanced balanced
S2M2-R [31] Inductive ~ WRN-28-10 64.93+0.18 83.18 +0.11 . . Method 1-shot 1-shot
Transductive tuning [6] Transductive WRN-28-10 65.73 £0.68 78.40+0.52 73.34+0.71 85.50+0.50 PT-MAP [14] 65.1 85.5
SIB [13] Transductive ~WRN-28-10 70.00 + 0.60 79.20 + 0.40 - - .
BD-CSPN [27] Transductive WRN-28-10 70.31+0.93 81.89+0.60 78.74+0.95 86.92 = 0.63 LaplacianShot [61] 73.7 78.9
EPNet [38] Transductive WRN-28-10 70.74 + 0.85 84.34+0.53 78.50+0.91 88.36+0.57 BD-CSPN [27] 74.5 779
LaplacianShot [61] Transductive ~'WRN-28-10 74.86+0.19 84.13+0.14 80.18+0.21 87.56+0.15 TIM [2] 74.8 80.3
ODC [34] Transductive ~WRN-28-10 80.22 88.22 84.70 91.20
iLPC [22] Transductive 'WRN-28-10 83.05+0.79 88.82+042 88.50+0.75 92.46+0.42 a-TIM [46] 75.7 -
protoLP (ours) Transductive WRN-28-10 83.07 +0.25 89.04 +0.13 89.04 £0.23 92.80 +0.13 protoLLP 82.22 90.13
protoLP* (ours) Transductive ~'WRN-28-10 84.32+0.21 90.02+0.12 89.65+0.22 9321 +0.13

Code: https://github.com/allenhaozhu/protoLP
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