Improving second-order representations
“better, faster, stronger”

Subhransu Maiji
College of Information and Computer Sciences
University of Massachusetts, Amherst

Talk outline

Motivation and background

Improving their robustness and efficiency

» spectral normalization and democratic pooling

What do these models learn?

Bilinear (second-order) pooling

CNN activations pooled after outer-product encoding

fA(laz)\ “chestnut
fA(l, I)TfB(l7 I) —VZ biliﬂear(l, I) < csiedse(r;u

warbler”
fB (l,I)/ |

T bilineax(l, 7) o(7)

fa

Generalizes texture encoders

beak tail belly legs belly

» Fisher vectors, Bag of Visual Words, VLAD

» Gram-matrix (when fa=fg) B

» Excellent transfer from ImageNet to fine-
grained domains (e.g., birds, cars, airplanes)

‘gray belly”

Lin et al., Bilinear CNNs for Fine-grained Visual Recognition, ICCV 15, PAMI 17

Bilinear (second-order) pooling

Classical texture encoders are bilinear fA 029 f B
» Bag of Visual Words (BoVW) [Sivic and Zisserman 03, Csurka et al. 04]
fa(x) =n(x) fe(x)=1
“hard” or “soft” assignment
» Vector of Locally Aggregated Descriptors (VLAD) [Jegou et al. 10]

fa(x) = n(x) fB(X) =[x — 13X — p25. . .5 X — fig]

“hard” assignment first order residuals
» Fisher vectors (FV) [Perronnin et al. 10]
fa(x) = n(x) fB(x) = [a181; 2B2; . . . ; o B
“soft” assignment o = Ei_%(x — Mz')

Bi = ; H(x—pi) O (x—pi)—1

first and second order residuals

Lin et al., Bilinear CNNs for Fine-grained Visual Recognition, ICCV 15, PAMI 17

Fine-grained classification

Bilinear (second-order) pooling

CUB 200-2011
200 species, 11,788 images

_" —.

FGVC Aircraft
100 variants, 10,000 images

(VGG-D + VGG-M networks

Stanford cars
196 models, 16,185 images

)

Method Birds Aircraft Cars Method NABirds
FC [D] 70.4 76.6 79.8 Inception-BN 73.1 [4]
FV [D] 4.7 78.7 85.7 B-CNN [D+M] 79.4
Bilinear [D+D] 84.0 83.9 90.6 48,562 images of 555 categories
Bilinear [D+M] 84.1 84.5 91.3
Previous work 84.1 [1] 80.7 [2] 92.6 [3]

BN =

Spatial Transformer Networks, Jaderberg et al., NIPS 15
Revisiting the Fisher vector for Fine-grained Classification, Gosselin et al., PR Letters 14
Fine-Grained Rec. w/o Part Annotations, Krause et al., CVPR 15

Batch-normalized Inception Architectures, Szegedy et al., CVPR 15

Talk outline

Motivation and background

Improving their robustness and efficiency

» spectral normalization and democratic normalization

What do these models learn?

Improved bilinear CNNs

Covariance (non-centered) matrix as an image representation

Image Dense features Covariance matrix { Normalization) Linear classifier
—) - :>

MxNxD DxD

Symmetric Positive Definite
Normalization is critical for performance

: . L[
» Element wise: 12norm, signed square-root A=— <Z:ca:T> + el
1=1

2-4% improvement

Lin and Maji, Improved Bilinear Pooling with CNNs, BMVC 17

Improved bilinear CNNs

Covariance (non-centered) matrix as an image representation

Image Dense features Covariance matrix { Normalization) Linear classifier

N I N
|~ _—Kﬁ:>

MxNxD DxD

Symmetric Positive Definite
Normalization is critical for performance

» Element wise: 12norm, signed square-root A= i(Z%ﬁ) +el
» Matrix normalization:] - _
log(o1) 0 c 0
» Log-Euclidean [carreira et al., 12] log(A) = U Q lOQ@) Q T
» Matrix power (0 <p < 1) (:) (‘) log(:ad)

» Whitening
Lin and Maji, Improved Bilinear Pooling with CNNs, BMVC 17

Improved bilinear CNNs

Covariance (non-centered) matrix as an image representation

S e
e

Image Dense features Covariance matrix {’Normalization) Linear classifier

e Y

MxNxD DxD

Symmetric Positive Definite
Normalization is critical for performance

» Element wise: [2norm, signed square-root A= i(wa’f) + el
» Matrix normalization: =
» Log-Euclidean [carreira et al., 12] _‘Bzf fp 8_
> Matrix power (0 <p < 1) ar=u|. S A
> Whitening 0o 0 - o

Lin and Maji, Improved Bilinear Pooling with CNNs, BMVC 17

Improved bilinear CNNs

On the burstiness of visual elements

Hervé Jégou Matthijs Douze Cordelia Schmid
INRIA Grenoble, LIK

firstname.lastname@inria.fr

SCOIOO5y @o
FSTESIEN
SSPHORO
L] ‘

GF4

C_)C‘%

SOWOLL
O T RE

f»* ~
| __IANG

X F
GWITTENHAM

SEAPIDEGRID
. NUREH®M
CLIF o HOMRDEN

) " 4

QT‘S-_)"T X A
2

YAV

2
T]
3 2

=,

DT

v
>

N~ R
e N S

G

(0]

)

. = -] 2% - \' »
g “ # R -8 [) '

Figure 1. Illustration of burstiness. Features assigned to the most “bursty” visual word of each image are displayed.

Effect of the exponent in the power normalization

88

Accuracy
| ~J Q0 Q0
@) Qo -) DO

\‘l
W

Improved bilinear CNNs

- Aircrafts

1 3)4 1)2

1/22

Power

1/23

1/24

p = 1/2 is nearly optimal

encodes scale invariance?

1/25

A — AP

Improved bilinear CNNs

Relative effects of different normalizations
L2 normalization is added at the end for all methods

Base Normalizations Accuracy
Network ' |og(A) A2 sgnsqri(A) Birds Aircrafts Cars

v 80. 1 82.9 77.7

v 77.9 79.8 78.7

VGG-D v 80.6 82.3 78.7
v v 81.1 85.1 81.4

v v 82.8 86.7 80.9

Spectral normalization offers complementary benefits
Related work: lonescu et al. 15, Li et al. 17, Huang and Van Gool 17

Improved bilinear CNNs

Why are matrix normalization layers not common in deep architectures?
» Forward computation: matrix normalization via SVD is slow

Lacks an efficient batch-mode GPU implementation: SVD of a 512x512
matrix takes the same time as the rest of the VGG-16 network evaluation!

CPU versions are sometimes faster, but incur copying overhead

» Backward computation: gradients of matrix normalization layers
Non-trivial to compute manually

Numerical precision can be an issue

Can we make forward and backward faster?

» Yes, for the matrix square-root case!

Improved bilinear CNNs

Matrix square-root on the GPU

Forward via Newton iterations (X2 - A = 0) Babylonian method

» Newton-Schulz iterations: Initialize Yk=A, Zk=I then Y, N_ S
guadratically to A2 and A-12 respectively (after scaling) Lo ~ \/_1’ S
1 1 _ - el
Yk+1 = §Yk(31 — ZkYk), Zk+1 = 5(3] — Zi| Tny1 = 9 (wn + mn))
» Only matrix multiplications and additions VS = lim z,,.

n—00

Approximation error
T T T

10°
—o—sohuiz : Denman-Beavers
Functions
of Matrices V... = Ly, + 7-1
107 Theory and Computation k+1 — 2(k + k),
_ 1 —1
s | 1IX2- Al 1Al Zrir = 5(Zr +Y0).
10-10_

Nicholas J. Higham

:

2 4 6 8 10 12 14
iteration

Lin and Maji, Improved Bilinear Pooling with CNNs, BMVC 17

Improved bilinear CNNs

Matrix square-root on the GPU

Forward via Newton iterations (X2 - A =0)

» Newton-Schulz iterations: Initialize Y«=A, Zk=I then Yk and Zx converge

guadratically to A2 and A-12 respectively (after scaling)

1 1
Y1 = §Yk(31 — ZkYy), Zgi1 = 5(3] — I YK) 2K

» Only matrix multiplications and additions

lteration 0 1 5 10 20 SVD

Birds 80. 1 381.7 83.0 82.9 82.8 82.8

Cars 82.9 85.0 87.0 86.8 86.7 86.7
Aircrafts | 77.7 79.5 81.3 30.9 80.9 30.9

Time Oms ims 4ms 6Ms 11ms 22Ms

5x faster on Matlab, 30x faster on PyTorch

Improved bilinear CNNs

Matrix square-root on the GPU

Backward evaluation
» Matrix function gradients via SVD [Magnus and Neudecker 88, lonescu et al. 15]
Given a matrix A= U 2 V and function Z = f(A) = U g(2) V, the gradients satisfy

oL (JdL [JL\' oL , .. 0L
ﬁ—{ﬁ‘*'(ﬁ) }Ug(Z), E—S(Z)U 7Y

()

oL v (,r0L\\ (0L .
ﬂ—U< (K ®<U ﬁ)) | (az>diag1>U

\

Kij=1/(0;—0;)I(i # j)

Poor numerical stability (adding a positive diagonal does not help!)

Improved bilinear CNNs

Matrix square-root on the GPU

Backward evaluation
» Matrix function gradients via SVD [Magnus and Neudecker 88, lonescu et al. 15]
Poor numerical stability (adding a positive diagonal does not help!)
» Matrix function gradients via solving a Lyapunov equation

The gradient of a matrix square-root satisfies a Lyapunov equation

oL 0L oL
1/2 [¥+ el 1/2 _ . 1/2
4 (&4) " (&4) AT =52Z Z =AY

Numerical stability depends on 1/(c+0;)

O(n3) solvers via SVD, Bartels-Stewart algorithm

Improved bilinear CNNs

Matrix square-root on the GPU

SVD vs Lyapunov gradients

» Lyapunov gradients lead to better accuracy (e.g., Aircrafts)

. normalization accuracy
network gradient , _
A2 osgnsqri(A) | pirds | cars aircrafts
v 84.0 90.6 86.9
VGG-D Lyapunov v v 85.8 92.0 88.5
SVD v v 85.5 91.8 86.8

» What about matrix logarithm?

We couldn’t get fine-tuning to converge with SVD gradients. Numerical stability
IS a major issue.

Possible solution: iterative square-root and scaling log(4) = 2¥log(A!/ 2k)

Improved bilinear CNNs

Gradients of the matrix square root layer

Automatic differentiation

» Implement the iterations in a library that supports auto-diff (e.g., pytorch)

1 1
Vier = VB = ZiYa), Zuir = 531 — ZiYi) Zxc

» Gradients are almost free!
Additional 2% of forward time for 512x512 matrices (10 iterations)

100x faster than gradients via SVD or Bartels-Stewart

» Memory overhead?
A naive implementation checkpoints all the intermediate values

Solution: run it for a few iterations

Improved bilinear CNNs

Gradients of the matrix square root layer

Gradients via iterative Lyapunov solver

> Iterative solver for the Lyapunov gradients

Initialize:

iterate:

return:

1 dl
Z p— A?' A p— Z' —_—
9 O 9 QO dZ
1
Q1 =5 (Qu(3I — AF) — AL (AL Qr — QiAr))
1
Ay = 5 (A (31 — AR Ag))
dL 1
dA ~ 2k

» No memory overhead!

In theory, this works if the forward was run to convergence.

Improved bilinear CNNs

Accuracy with spectral normalization layers

Method Base Accuracy
network Birds Cars | Aircrafts
B-CNN [PAMI 16] VGG-D 84.0 90.6 360.9
Improved B-CNN [BMVC 17] VGG-D 85.8 92.0 88.5
CBP [CVPR 16] VGG-D 84.0 i i
LRBP [CVPR 17] VGG-D 84.2 90.9 86.9
BoostCNN [BMVC 16] B-CNN 86.2 92.1 88.5
Kernel Pooling [CVPR 17] VGG-D 86.2 92.4 86.9
STN [NIPS 15] Inception-BN 84.1 i i
Krause et al. [CVPR 15] VGG-D + box - 92.6 -

Improved B-CNN matches the new state of the art (ImageNet1K pre-training but no
additional training data except labelled images of the dataset)

» CBP: Compact bilinear pooling (10x reduction in the classifier size)
» LRBP: Low-rank bilinear pooling (10-100x reduction in the classifier size)
» BoostCNN: Boosts B-CNNs at several scales (10-50x slower)

» Kernel Pooling: Pooling higher-order interactions

Improved bilinear CNNs

Using DenseNet-201 [Huang et al., CVPR 17]

Dataset

FGVC Aircrafts
INat Plantae
INat Animalia
Stanford Cars
INat Reptilia
INat Amphibia
INat Aves

INat Mollusca
INat Fungi
INat Mammalia
INat Arachnida
INat Insecta
CU Birds

INat Actinopterygii

6,667

118,800

5,966
3,144

22,754
11,156
143,950

8,007
6,864

20,104

4,037

87,192

5994
7,835

#images #classes

100
2,917
178
196
284
144
1,258
262
321
234
114
2,031
200
369

DenseNet
(regular)

92.3
69.6
80.5
93.2
93.3
55.6
60.1
73.5
70.5
60.1
66.4
78.2
34.9
76.5

DenseNet
(bilinear)

90.6
66.9
79.0
92.9
51.6
56.9
62.0
75.1
72.8
63.3
71.3
82.0
88.3
82.7

Second-order democratic aggregation
Democratic aggregation [Murray et al., PAMI 17]

L1, 2, |
00o oo o
image 0000 %L .
i_;COI‘IV.; O, 200_»"‘
B oo _O v ° | 4
Y-democt. "§(X)| classtier
Q11,2 P2, -
Democratic aggregation [Murray et al.] computes a weighted combination of features:
X = {x1,X3,+,X,} encoded by ¢(x) = xx!. E(X) = Z a(x)o(x)
xcX

such that a(x) > 0 and satisfy:

a(x)p(x)"E(X) =C, vxeX

vy-Democratic aggregation diag(a)Kdiag(a)l, = (K1,)"

Lin, Maji, Konuisz, Second-order democratic aggregation, ECCV 18

Matrix square-root is not linear!

Proof. Here is an example where the matrix power AP does not lie in the linear
span of the outer-products of the features x € X'. Consider two vectors x; =
[1 07 and x5 = [1 1]1. The covariance matrix A formed by the two is

A =xx1 +xoxd

10 11

__00_+[11}
|21
|11

The square root of the matrix A is:

Al/2 _ [1:3416 0.4472
[0.4472 0.8944

It is easy to see that A'/2 cannot be written as a linear combination of x;x7 and
XoX3 since any linear combination will have all equal values for all the entries

except possibly the top left value.

Second-order democratic aggregation

Relationship between spectral normalization and democratic pooling

Equalizing feature contributions. While seemingly different, both democratic aggregation and power normalization
aim at equalizing contributions among features. Formally lets define the contribution of a feature x as C(x) given as

C(x) = p(x)"¢(X).

For democratic aggregation C(x) = 1/a(x). In the paper we show that the variance of the contributions for the matrix
normalization with a power p satisfies

2 2p
) TmaxA]

o < —2p’
43X
4 CUB-200 . MIT indoor
10 I 10 i !
102 10*
- -
& O
__S 10° _g 10°
c c
3 3
, —square-root , —square-root
107 | —sum ' 10 —sum
democratic democratic
- = v-democratic - = ~v-democratic
104! ' ' ' 10! ' ' '
0 200 400 600 800 0 200 400 600 800

indices sorted by contribution indices sorted by contribution

Second-order democratic aggregation

Democratic vs. Spectral

Democratic aggregation is faster than

spectral normalization
» 0O(n?) vs. O(n3) per iteration

But, it’s performance is worse

Dataset Sum
Caltech UCSD Birds

Stanford Cars

FGVC Aircrafts
DTD

FMD

MIT Indoor

34.0
90.6

85.7
71.2
84.6
79.5

Algorithm 1 Dampened Sinkhorn Algorithm
1: procedure SINKHORN(K, 7, T)

2: a+—1,

3 for t=1to T do

4: o = diag(a)Kdiag(a)ln,

5: a+— ajo’

6 return o

Democratic Spectral

34.9 85.9
90.8 91.7
86.7 87.6
72.3 72.9
84.6 85.0
30.4 30.9

Lin, Maji, Konuisz, Second-order democratic aggregation, ECCV 18

Talk outline

Motivation and background

Improving their robustness and efficiency

» spectral normalization and democratic normalization

What do these models learn?

Visualizing deep networks

“inverse” images for bilinear CNNs

Maximal images: arg max log P(c|Z, W) + logI'(Z)

.. | D . 3 ‘e °
00...:. ., a*y O.On.o.,.
L » . » L ™ .. -
0e° % 0% 2%5e'v0 g, 0 0,
U U AR A 1
0.0 0 o v getes e 00,0,
e » ‘.' 'X..
B v .. .9"_ ~ | ‘.. L .
.... av @ Y A v o
. » ~ . 4y
o f
"%

vermilion flycatcher

Lin and Maiji, Visualizing and Understanding Deep Texture Representations, CVPR 16

Visualizing deep networks

What texture are birds?

“L:l.’ .' :

———

—
I
—
—
—
S

it/

o 1 s - AN
B, e ~ VR,

Pied kigfisher Hooded oriole

American goldfinch

Lin and Maiji, Visualizing and Understanding Deep Texture Representations, CVPR 16

Visualizing deep networks

What texture are bookstores?

honeycombed interlaced

classroom laundromat

Visualizing deep networks

Oxford flowers

Visualizing deep networks
FGVC butterflies and moths

Daedaleopsis confragosa

7p
-
| -
O
=
wfd
)
C
Q.
)
)
d

1zing
FGVC fungi

Kretzschmaria deusta

Isua

V
i

ﬁ;

Crepidotus cesat

"\
|

Summary

Second-order / bilinear pooling benefits:
» Excellent performance across diverse domains

» Works efficiently with image regions

» Multiplicative interactions have found their use in visual question answering,
video understanding, few-shot learning, etc.

Open questions
» Evaluating matrix functions in the compact domain (cf., Tensor sketch)

Project pages
> http://vis-www.cs.umass.edu/bcnn

» https://people.cs.umass.edu/~smaji/projects/matrix-sqrt/

» http://vis-www.cs.umass.edu/o2dp/

Collaborators: Tsung-Yu Lin, Aruni RoyChowdhury, Mikayla Timm, Chenyun Wu
Piotr Konuisz oy, o

http://vis-www.cs.umass.edu/bcnn
https://people.cs.umass.edu/~smaji/projects/matrix-sqrt/
http://vis-www.cs.umass.edu/o2dp/

