
Improving second-order representations
“better, faster, stronger”

Subhransu Maji
College of Information and Computer Sciences
University of Massachusetts, Amherst

Talk outline 2

Motivation and background

Improving their robustness and efficiency
▶ spectral normalization and democratic pooling

What do these models learn?

Bilinear (second-order) pooling 3

CNN activations pooled after outer-product encoding

fA(l, I)

fB(l, I)

descriptor

X

l

bilinear(l, I)

�(I)

local featuresimage

l

pooling
class

C

I

fA(l, I)T fB(l, I)

bilinear(l, I)

beak tail belly legs belly

red
blue
gray

blue

black

“gray belly”

fA

fB

 Generalizes texture encoders
▶ Fisher vectors, Bag of Visual Words, VLAD
▶ Gram-matrix (when fA=fB)
▶ Excellent transfer from ImageNet to fine-

grained domains (e.g., birds, cars, airplanes)

Lin et al., Bilinear CNNs for Fine-grained Visual Recognition, ICCV 15, PAMI 17

“chestnut
sided

warbler”

Bilinear (second-order) pooling 4

Classical texture encoders are bilinear

▶ Bag of Visual Words (BoVW) [Sivic and Zisserman 03, Csurka et al. 04] 

▶ Vector of Locally Aggregated Descriptors (VLAD) [Jegou et al. 10] 

▶ Fisher vectors (FV) [Perronnin et al. 10]

fA ⌦ fB

Lin et al., Bilinear CNNs for Fine-grained Visual Recognition, ICCV 15, PAMI 17

fA(x) = ⌘(x)

fB(x) = 1fA(x) = ⌘(x)

fA(x) = ⌘(x)

“hard” or “soft” assignment

“hard” assignment

“soft” assignment

first order residuals

fB(x) = [x� µ1;x� µ2; . . . ;x� µk]

first and second order residuals

fB(x) = [↵1�1;↵2�2; . . . ;↵k�k]

Bilinear (second-order) pooling 5

Fine-grained classification (VGG-D + VGG-M networks)

Method Birds Aircraft Cars
FC [D] 70.4 76.6 79.8

FV [D] 74.7 78.7 85.7

Bilinear [D+D] 84.0 83.9 90.6
Bilinear [D+M] 84.1 84.5 91.3

Previous work 84.1 [1] 80.7 [2] 92.6 [3]

CUB 200-2011
200 species, 11,788 images

FGVC Aircraft
100 variants, 10,000 images

Stanford cars
196 models, 16,185 images

Method NABirds
Inception-BN 73.1 [4]
B-CNN [D+M] 79.4

48,562 images of 555 categories

[1] Spatial Transformer Networks, Jaderberg et al., NIPS 15

[2] Revisiting the Fisher vector for Fine-grained Classification, Gosselin et al., PR Letters 14

[3] Fine-Grained Rec. w/o Part Annotations, Krause et al., CVPR 15

[4] Batch-normalized Inception Architectures, Szegedy et al., CVPR 15

Talk outline 6

Motivation and background

Improving their robustness and efficiency
▶ spectral normalization and democratic normalization

What do these models learn?

Improved bilinear CNNs 7

 Covariance (non-centered) matrix as an image representation

 Image Dense features Covariance matrix

xi

 Linear classifier Normalization

A =
1

n

nX

i=1

xix
T
i

!
+ ✏I

 MxNxD DxD

 Normalization is critical for performance
▶ Element wise: l2norm, signed square-root

 Symmetric Positive Definite

Lin and Maji, Improved Bilinear Pooling with CNNs, BMVC 17

2-4% improvement

Improved bilinear CNNs 8

 Covariance (non-centered) matrix as an image representation

 Image Dense features Covariance matrix

xi

 Linear classifier Normalization

A =
1

n

nX

i=1

xix
T
i

!
+ ✏I

 MxNxD DxD

 Normalization is critical for performance
▶ Element wise: l2norm, signed square-root
▶ Matrix normalization:

▶ Log-Euclidean [Carreira et al., 12]

▶ Matrix power (0 < p < 1)
▶ Whitening

log(A) = U

2

6664

log(�1) 0 · · · 0
0 log(�2) · · · 0
...

...
. . .

...
0 0 · · · log(�d)

3

7775
U

T

 Symmetric Positive Definite

Lin and Maji, Improved Bilinear Pooling with CNNs, BMVC 17

Improved bilinear CNNs 9

 Covariance (non-centered) matrix as an image representation

 Image Dense features Covariance matrix

xi

 Linear classifier Normalization

A =
1

n

nX

i=1

xix
T
i

!
+ ✏I

 Normalization is critical for performance
▶ Element wise: l2norm, signed square-root
▶ Matrix normalization:

▶ Log-Euclidean [Carreira et al., 12]

▶ Matrix power (0 < p < 1)
▶ Whitening

Ap = U

2

6664

�p
1 0 · · · 0
0 �p

2 · · · 0
...

...
. . .

...
0 0 · · · �p

d

3

7775
UT

 Symmetric Positive Definite

 MxNxD DxD

Lin and Maji, Improved Bilinear Pooling with CNNs, BMVC 17

Improved bilinear CNNs 10

Improved bilinear CNNs 11

 Effect of the exponent in the power normalization

1 3/4 1/2 1/22 1/23 1/24 1/25

Power

74

76

78

80

82

84

86

88

A
cc

u
ra

cy

Birds
Cars
Aircrafts

 p = 1/2 is nearly optimal
 encodes scale invariance?

A ! Ap

Improved bilinear CNNs 12

 Relative effects of different normalizations

 L2 normalization is added at the end for all methods

Base
network

Normalizations Accuracy
log(A) A1/2 sgnsqrt(A) Birds Aircrafts Cars

VGG-D

✓ 80.1 82.9 77.7
✓ 77.9 79.8 78.7

✓ 80.6 82.3 78.7
✓ ✓ 81.1 85.1 81.4

✓ ✓ 82.8 86.7 80.9

 Spectral normalization offers complementary benefits
Related work: Ionescu et al. 15, Li et al. 17, Huang and Van Gool 17

Improved bilinear CNNs

 Why are matrix normalization layers not common in deep architectures?
▶ Forward computation: matrix normalization via SVD is slow

Lacks an efficient batch-mode GPU implementation: SVD of a 512x512
matrix takes the same time as the rest of the VGG-16 network evaluation!
CPU versions are sometimes faster, but incur copying overhead

▶ Backward computation: gradients of matrix normalization layers
Non-trivial to compute manually
Numerical precision can be an issue

Can we make forward and backward faster?
▶ Yes, for the matrix square-root case!

13

Improved bilinear CNNs 14

 Matrix square-root on the GPU

▶ Newton-Schulz iterations: Initialize Yk=A, Zk=I then Yk and Zk converge
quadratically to A1/2 and A-1/2 respectively (after scaling)

▶ Only matrix multiplications and additions

Yk+1 =
1

2
Yk(3I � ZkYk), Zk+1 =

1

2
(3I � ZkYK)ZK

Lin and Maji, Improved Bilinear Pooling with CNNs, BMVC 17

iteration

2 4 6 8 10 12 14

e
rr

o
r

10
-10

10
-5

10
0

Approximation error

schulz

 ||X2 - A|| / ||A||

Denman-Beavers

Babylonian method Forward via Newton iterations (X2 - A = 0)

Improved bilinear CNNs 15

 Matrix square-root on the GPU

 Forward via Newton iterations (X2 - A = 0)
▶ Newton-Schulz iterations: Initialize Yk=A, Zk=I then Yk and Zk converge

quadratically to A1/2 and A-1/2 respectively (after scaling)

▶ Only matrix multiplications and additions

Yk+1 =
1

2
Yk(3I � ZkYk), Zk+1 =

1

2
(3I � ZkYK)ZK

Iteration
s

0 1 5 10 20 SVD
Birds 80.1 81.7 83.0 82.9 82.8 82.8
Cars 82.9 85.0 87.0 86.8 86.7 86.7

Aircrafts 77.7 79.5 81.3 80.9 80.9 80.9
Time 0ms 1ms 4ms 6ms 11ms 22ms

5x faster on Matlab, 30x faster on PyTorch

Improved bilinear CNNs 16

 Matrix square-root on the GPU

 Backward evaluation
▶ Matrix function gradients via SVD [Magnus and Neudecker 88, Ionescu et al. 15]

Given a matrix A = U Σ V and function Z = f(A) = U g(Σ) V, the gradients satisfy

Poor numerical stability (adding a positive diagonal does not help!)

Improved bilinear CNNs 17

 Matrix square-root on the GPU

 Backward evaluation
▶ Matrix function gradients via SVD [Magnus and Neudecker 88, Ionescu et al. 15]

Poor numerical stability (adding a positive diagonal does not help!)
▶ Matrix function gradients via solving a Lyapunov equation

The gradient of a matrix square-root satisfies a Lyapunov equation

Numerical stability depends on 1/(σᵢ+σⱼ)
O(n3) solvers via SVD, Bartels-Stewart algorithm

A1/2

✓
@L

@A

◆
+

✓
@L

@A

◆
A1/2 =

@L

@Z Z = A1/2

18

 Matrix square-root on the GPU

 SVD vs Lyapunov gradients
▶ Lyapunov gradients lead to better accuracy (e.g., Aircrafts)

▶ What about matrix logarithm?
We couldn’t get fine-tuning to converge with SVD gradients. Numerical stability
is a major issue.
Possible solution: iterative square-root and scaling

network gradient normalization accuracy
A1/2 sgnsqrt(A) birds cars aircrafts

VGG-D
✓ 84.0 90.6 86.9

Lyapunov ✓ ✓ 85.8 92.0 88.5
SVD ✓ ✓ 85.5 91.8 86.8

Improved bilinear CNNs

Improved bilinear CNNs 19

 Gradients of the matrix square root layer

 Automatic differentiation
▶ Implement the iterations in a library that supports auto-diff (e.g., pytorch)

▶ Gradients are almost free!
Additional 2% of forward time for 512x512 matrices (10 iterations)
100x faster than gradients via SVD or Bartels-Stewart

▶ Memory overhead?
A naive implementation checkpoints all the intermediate values
Solution: run it for a few iterations

Yk+1 =
1

2
Yk(3I � ZkYk), Zk+1 =

1

2
(3I � ZkYK)ZK

Improved bilinear CNNs 20

 Gradients of the matrix square root layer

Gradients via iterative Lyapunov solver
▶ Iterative solver for the Lyapunov gradients

▶ No memory overhead!
In theory, this works if the forward was run to convergence.

Qk+1 =
1

2

�
Qk(3I �A2

k)�AT
k (A

T
kQk �QkAk)

�

Ak+1 =
1

2
(Ak(3I �AkAk))

initialize:

iterate:

return: dL

dA
=

1

2
Qk+1

Z = A
1
2 ; A0 = Z; Q0 =

dL

dZ

Improved bilinear CNNs 21

 Accuracy with spectral normalization layers

Method Base
network

Accuracy
Birds Cars Aircrafts

B-CNN [PAMI 16] VGG-D 84.0 90.6 86.9
Improved B-CNN [BMVC 17] VGG-D 85.8 92.0 88.5

CBP [CVPR 16] VGG-D 84.0 - -
LRBP [CVPR 17] VGG-D 84.2 90.9 86.9

BoostCNN [BMVC 16] B-CNN 86.2 92.1 88.5
Kernel Pooling [CVPR 17] VGG-D 86.2 92.4 86.9

STN [NIPS 15] Inception-BN 84.1 - -
Krause et al. [CVPR 15] VGG-D + box - 92.6 -

 Improved B-CNN matches the new state of the art (ImageNet1K pre-training but no
additional training data except labelled images of the dataset)

▶ CBP: Compact bilinear pooling (10x reduction in the classifier size)
▶ LRBP: Low-rank bilinear pooling (10-100x reduction in the classifier size)
▶ BoostCNN: Boosts B-CNNs at several scales (10-50x slower)
▶ Kernel Pooling: Pooling higher-order interactions

Improved bilinear CNNs 22

 Using DenseNet-201 [Huang et al., CVPR 17]

Dataset #images #classes DenseNet
(regular)

DenseNet
(bilinear)

FGVC Aircrafts 6,667 100 92.3 90.6
iNat Plantae 118,800 2,917 69.6 66.9
iNat Animalia 5,966 178 80.5 79.0
Stanford Cars 8,144 196 93.2 92.9
iNat Reptilia 22,754 284 53.3 51.6
iNat Amphibia 11,156 144 55.6 56.9
iNat Aves 143,950 1,258 60.1 62.0
iNat Mollusca 8,007 262 73.5 75.1
iNat Fungi 6,864 321 70.5 72.8
iNat Mammalia 20,104 234 60.1 63.3
iNat Arachnida 4,037 114 66.4 71.3
iNat Insecta 87,192 2,031 78.2 82.0
CU Birds 5994 200 84.9 88.3
iNat Actinopterygii 7,835 369 76.5 82.7

Second-order democratic aggregation 23

 Democratic aggregation [Murray et al., PAMI 17]

γ-Democratic aggregation

Lin, Maji, Konuisz, Second-order democratic aggregation, ECCV 18

24Matrix square-root is not linear!

Second-order democratic aggregation 25

 Relationship between spectral normalization and democratic pooling

Second-order democratic aggregation 26

 Democratic vs. Spectral

Democratic aggregation is faster than
spectral normalization

▶ O(n2) vs. O(n3) per iteration

Lin, Maji, Konuisz, Second-order democratic aggregation, ECCV 18

Dataset Sum Democratic Spectral
Caltech UCSD Birds 84.0 84.9 85.9

Stanford Cars 90.6 90.8 91.7

FGVC Aircrafts 85.7 86.7 87.6
DTD 71.2 72.3 72.9
FMD 84.6 84.6 85.0
MIT Indoor 79.5 80.4 80.9

But, it’s performance is worse

Motivation and background

Improving their robustness and efficiency
▶ spectral normalization and democratic normalization

What do these models learn?

Talk outline 27

Visualizing deep networks

 Maximal images:

28

 “inverse” images for bilinear CNNs

argmax

I
logP (c|I,W) + log�(I)

Lin and Maji, Visualizing and Understanding Deep Texture Representations, CVPR 16

29

 What texture are birds?

Visualizing deep networks

Cactus wrenCrested aucket Red winged blackbird Indigo bunting

American goldfinch Pied kingfisher Hooded oriole White eyed vireo

Lin and Maji, Visualizing and Understanding Deep Texture Representations, CVPR 16

Visualizing deep networks 30

 What texture are bookstores?

Visualizing deep networks 31

 Oxford flowers

Visualizing deep networks 32

 FGVC butterflies and moths

Visualizing deep networks 33

 FGVC fungi

Summary

 Second-order / bilinear pooling benefits:
▶ Excellent performance across diverse domains
▶ Works efficiently with image regions
▶ Multiplicative interactions have found their use in visual question answering,

video understanding, few-shot learning, etc.

 Open questions
▶ Evaluating matrix functions in the compact domain (cf., Tensor sketch)

 Project pages
▶ http://vis-www.cs.umass.edu/bcnn
▶ https://people.cs.umass.edu/~smaji/projects/matrix-sqrt/
▶ http://vis-www.cs.umass.edu/o2dp/

 Collaborators: Tsung-Yu Lin, Aruni RoyChowdhury, Mikayla Timm, Chenyun Wu,
Piotr Konuisz

34

http://vis-www.cs.umass.edu/bcnn
https://people.cs.umass.edu/~smaji/projects/matrix-sqrt/
http://vis-www.cs.umass.edu/o2dp/

