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Introduction

• How to represent an image? 

– Scale, rotation, illumination, occlusion, 

background clutter, deformation, … 

Cat:



• Hand-crafted, global features

– Color, texture, shape, structure, etc. 

– Goal: “Invariant and discriminative” 

• Classifier

– K-nearest neighbor, SVMs, Boosting, …

1. Before year 2000



• Invariant to view angle, rotation, scale, 
illumination, clutter, ...

2. Days of the Bag of Features (BoF) model 

Local Invariant Features

Interest point 
detection

or 
Dense sampling

An image becomes “A bag of features”



3. Era of Deep Learning 
Deep Local Descriptors

“Cat”

Depth

Height

Width



Image(s): a set of points/vectors
Image set classification
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Action recognition

vs.

Neuroimaging
analysis

How to pool a set of points/vectors to obtain 
a global visual representation ?

Object detection & classification



Covariance representation

• Max pooling, average (sum) pooling, etc. 
• Covariance pooling

A set of 
local 

descriptors

x1

x2

.

.

. 

xn

How to pool?

Essentially a second-order pooling
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Outline
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Introduction on Covariance representation

Covariance Matrix

vs.



Introduction on Covariance representation
Use a Covariance matrix as a feature representation

10Image is from http://www.statsref.com/HTML/index.html?multivariate_distributions.html



Introduction on Covariance representation
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belongs to Symmetric Positive Definite (SPD) matrix

resides on a manifold instead of the whole space



Introduction on Covariance representation

?
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How to measure the similarity of two SPD matrices? 



Introduction on SPD matrix

Similarity measures for SPD matrices
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SPD 
matrices

Kernel 
method

Geodesic 
distance

Euclidean 
mapping



Introduction on SPD matrix
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Introduction on SPD matrix
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Euclidean 
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Introduction on SPD matrix
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Introduction on SPD matrix
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Integration with 
deep learning
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Introduction on SPD matrix
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Integration with 
deep learning
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Motivation

Covariance Matrix

Covariance matrix needs to be estimated  from data



Motivation

• Covariance estimate becomes unreliable
– High-dimensional (d) features
– Small sample (n)

• Existing work 
– Not consider the quality of covariance representation
– Especially the estimate of eigenvalues
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Motivation
Stein Kernel

22



Motivation

1. Eigenvalue estimation becomes biased when the 
number of samples is inadequate
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Motivation

2. The eigenvalues are not collectively manipulated 
toward greater discrimination

Class 1 Class 2
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Let’s do a data-dependent “eigenvalue massage”

Class 1 Class 2

Class 1 Class 2

Proposed method
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adjustment



We propose “Discriminative Covariance Representation”

Power-based adjustment Coefficient-based adjustment

Proposed method
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-adjusted S-Divergence: 

• Power-based adjustment

• Coefficient-based adjustment

Discriminative Stein kernel (DSK)

Proposed method
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How to learn the optimal adjustment parameter    ?  

• Kernel Alignment based method

• Class Separability based method

• Radius-margin Bound based Framework

Proposed method
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Discriminative Stein kernel (DSK)



Experimental Result

• Brodatz texture

• ADNI rs-fMRI• ETH-80 object

• FERET face

Data sets



Experimental Result

30The most difficult 15 pairs of Brodatz texture data set



Experimental Result
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The most difficult 15 pairs of Brodatz texture data set



DSK vs. eigenvalue estimation improvement methods

Discussion

[1] X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using their 
sample estimates,” IEEE Trans. Inf. Theory, vol. 54, pp. 5113–5129, Nov. 2008.
[2] B. Efron and C. Morris, “Multivariate empirical Bayes and estimation of covariance matrices,” Ann. 
Stat., vol. 4, pp. 22–32, 1976.
[3] A. Ben-David and C. E. Davidson, “Eigenvalue estimation of hyper-spectral Wishart covariance matrices 
from limited number of samples,” IEEE Trans. Geosci. Remote Sens., vol. 50, pp. 4384–4396, May 2012.
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Introduction
Applications with high dimensions but small sample issue

34

Small sample           10 ~ 300
High dimensions     50 ~ 400



Introduction
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This results in singular covariance estimate, which adversely
affects representation.

How to address this situation?

Data + Prior knowledge

Explore the underlying structure of visual features



Proposed SICE representation
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Structure sparsity in skeletal human action recognition

• Only a small number of joints are directly linked.

• How to represent such direct links?

Sparse Inverse Covariance Estimation 
(SICE)



Proposed SICE representation
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Proposed SICE representation
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Properties of SICE representation:

• is guaranteed to be nonsingular

• reduces over-fitting, giving more reliable representation

• Measures the partial correlation, allowing the sparsity
prior to be conveniently imposed



Application to Skeletal Action Recognition

39



Application to Skeletal Action Recognition



Application to other tasks
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The principle of ``Bet on sparsity''
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Introduction

Again, look into Covariance representation
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…



Introduction

Again, look into Covariance representation
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…
i-th feature j-th feature

Just a linear kernel function!



Introduction

Covariance representation
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Resulting issues:

• Only modeling linear correlation of features.

• A single, fixed representation form.

• Unreliable or even singular covariance estimate.



Proposed kernel-matrix representation
Let’s use a kernel matrix instead
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Advantages:

• Model nonlinear relationship between features;

• For many kernels, M is guaranteed to be nonsingular, no matter 
what the feature dimensions and sample size are. 

• Maintain the size of covariance representation and the 
computational load.

Covariance

SPD Matrix!



Application to Skeletal Action Recognition
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Application to Skeletal Action Recognition
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Application to Object Recognition

49



Application to Deep Learning Features
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58
60
62
64
66
68
70
72
74
76
78
80

Alex Net (F7) VGG-19 Net
(Conv5)

Fisher Vector
(CVPR15)
Cov-RP

Ker-RP (RBF)

Comparison on MIT Indoor Scenes Data Set
(Classification accuracy in percentage)



Discussion

SICE vs. Kernel matrix: which is better?
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Discussion
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SICE vs. Kernel matrix representation: which is better?
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Covariance representation

Integration with Deep Learning

Bilinear CNN Models for Fine-grained Visual Recognition, Lin et al, ICCV2015



Covariance representation

Integration with Deep Learning

Matrix Backpropagation for Deep Networks with Structured Layers, 
Ionescu et al, ICCV2015



Covariance representation

Integration with Deep Learning

Improved Bilinear Pooling with CNN, Lin and Maji, BMVC2017



Covariance representation

Integration with Deep Learning

Is Second-order Information Helpful for Large-scale Visual Recognition?,
Li et al., ICCV2017



Proposed DeepKSPD

Motivation
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l The kernel-matrix-based SPD representation
l has not been developed upon deep local descriptors
l has not been jointly learned via deep learning

l Existing matrix backpropagation for learning covariance-
representation via deep networks

l encounters numerical stability issue



Proposed DeepKSPD

Architecture and layers 
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Proposed DeepKSPD
Matrix backpropagation
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Proposed DeepKSPD
Matrix backpropagation

61

H = f(K) on the kernel matrix K      

~ ?



Proposed DeepKSPD

Existing matrix backpropagation

Matrix Backpropagation for Deep Networks with Structured Layers,  Ionescu et al, ICCV2015



Proposed DeepKSPD

Result from the literature of Operator Theory (1951)



Proposed DeepKSPD

Existing matrix backpropagation (Ionescu et al, ICCV2015)

Proposed matrix backpropagation

What is their relationship?



Proposed DeepKSPD

Generalise to matrix α-rooting normalisation



Experimental Result

Fine-grained Image Recognition



Experimental Result

Fine-grained Image Recognition



Experimental Result

Numerical stability of backpropagation



Experimental Result

DeepKSPD vs DeepCOV



Experimental Result

Ablation study 
• Learning width θ in the GRBF kernel
• Learning α in matrix α-rooting normalisation



Research trends on learning SPD representation

• Compactness of second-order feature representation & 
Computational efficiency

• Efficient training of SPD structural layers by considering the 
underlying manifold structure  

• Second-order correlation across layers

• Deeply integrated into convolutional neural networks

• More applications explored
• Generic and Fine-grained image recognition
• Image segmentation, Person reidentification and retrieval
• Action parsing & analysis, Image super-resolution
• More to be explored… 



Conclusion
• Discriminative Stein kernel to address two issues in 

covariance representation
• SICE representation to incorporate structure sparsity
• Kernel matrix representation to move beyond linear, fixed 

covariance representation
• End-to-end deep learning of KSPD representation
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An archive website

https://saimunur.github.io/spd-archive/

https://saimunur.github.io/spd-archive/


Q&A
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