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Introduction

* How to represent an image?

— Scale, rotation, illumination, occlusion,

background clutter, deformation, ...




1. Before year 2000

 Hand-crafted, global features

— Color, texture, shape, structure, etc.

— Goal: “Invariant and discriminative”

e Classifier

— K-nearest neighbor, SVMs, Boosting, ...
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2. Days of the Bag of Features (BoF) model

Local Invariant Features

* Invariant to view angle, rotation, scale,
illumination, clutter, ...

Interest point
detection

or
Dense sampling
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An image becomes “A bag of features”



3. Era of Deep Learning

Deep Local Descriptors

Depth

EEEN .
mEmmm Height

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5 H
!gsgg $@26:28 S2: f. maps § C5:1 Wldth
o : layer .
6@14x14 120 F864' layer 018TPUT

=) “Cat”

I
| Full coanection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection



Image(s): a set of points/vectors

Object detection & classification  Image set classification

Neurmmagmg
analysis

How to pool a set of points/vectors to obtain
a global visual representation ?



Covariance representation

Essentially a second-order pooling

4 N
X1
X2

A set of How to pool?
local ——>
descriptors

Xn

S /

 Max pooling, average (sum) pooling, etc.
 Covariance pooling



* |Introduction on Covariance representation

* Our research work
— Discriminatively Learning Covariance Representation
— Exploring Sparse Inverse Covariance Representation
— Moving to Kernel-matrix-based Representation (KSPD)

— Learning KSPD in deep neural networks

 Conclusion



Introduction on Covariance representation
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Introduction on Covariance representation

Use a Covariance matrix as a feature representation

Tax1 ~ N (Pax1, Xdxd)

2
H = % Z?:1 L 1 ‘12 913
. . 2= | 021 03 0923
Y= —=> (i —p)(x; — ) 031 032 U%

Image is from http://www.statsref.com/HTML/index.html?multivariate_distributions.html 10



Introduction on Covariance representation

3 belongs to Symmetric Positive Definite (SPD) matrix

Sym;r —{A|[A=A" Vx c Ry z#40,2"' Az > 0}

32 resides on a manifold instead of the whole space
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Introduction on Covariance representation

How to measure the similarity of two SPD matrices?
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Introduction on SPD matrix

Similarity measures for SPD matrices

Geodesic
distance

SPD Euclidean
matrices mapping

Kernel
method
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Introduction on SPD matrix

Geodesic Distance

—

Fletcher P T, Principal geodesic analysis
on symmetric spaces: Statistics of
diffusion tensors. Computer Vision and
Mathematical Methods in Medical and
Biomedical Image Analysis., 2004

~

Euclidean Distance

Pennec X, Fillard P, Ayache N. A
Riemannian framework for tensor
computing. IJCV, 2006

/

distance .
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Forstner W, Moonen B. A metric for
covariance matrices, Geodesy-The

Challenge of the 3rd Millennium, 2003
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Lenglet C, Statistics on the manifold of
multivariate normal distributions: Theory and
application to diffusion tensor MRI processing.
Journal of Mathematical Imaging and Vision, 2006
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Introduction on SPD matrix

Arsigny V, Log-Euclidean metrics for fast and
simple calculus on diffusion tensors.
Magnetic resonance in medicine, 2006,
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2005 - 2008

Euclidean

mapping ~ N
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Tuzel O, Pedestrian detection via classification on
riemannian manifolds. PAMI, IEEE Transactions on, 2008

Veeraraghavan A, Matching shape sequences in
video with applications in human movement
analysis. PAMI, IEEE Transactions on, 2005
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Introduction on SPD matrix

¢ (by SPD kernels)
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Manifeld

Kernel-induced

Local manifold space feature space

Sra S. Positive definite matrices and the S- Wang R., et. al., Covariance discriminative Vemulapalli R, Pillai J K, Chellappa R.
divergence. arXiv preprint arXiv:1110.1773, learning: A natural and efficient approach Kernel learning for extrinsic classification
2011. to image set classification, CVPR, 2012 of manifold features, CVPR, 2013
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-
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Kernel — 2011 —
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methods — 2012 2013 2014~
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- L Quang, Minh Ha, et. Al., Log-Hilbert-
Harandi M et al. Sparse coding and dictionary Schmidt metric between positive definite
learning for SPD matrices: a kernel approach, S. Jayasumana, et. al., Kernel methods on the Riemannian operators on Hilbert spaces. NIPS. 2014.
ECCV, 2012 manifold of symmetric positive definite matrices, CVPR 2013.
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Introduction on SPD matrix
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Introduction on SPD matrix
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* |Introduction on Covariance representation

* Our research work
— Discriminatively Learning Covariance Representation
— Exploring Sparse Inverse Covariance Representation
— Moving to Kernel-matrix-based Representation (KSPD)

— Learning KSPD in deep neural networks

 Conclusion
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Covariance matrix needs to be estimated from data



e Covariance estimate becomes unreliable
— High-dimensional (d) features
— Small sample (n)

rank(Xgxq) < min(d,n — 1)

* Existing work
— Not consider the quality of covariance representation

— Especially the estimate of eigenvalues



Motivation

SteinKernel 1 x v) = exp(-6-5(X,Y))

+Y

where S(X,Y) =log (det ( )) — —log (det(XY))

d d
X+Y 1
= ;:1 log A; ( 5 ) 5 E log Ai(X) + log Ai(Y)]

gauk

X+Y
2

Eigenvalue of
Eigenvalue of X Eigenvalue of Y
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1. Eigenvalue estimation becomes biased when the
number of samples is inadequate

Comparison of eigenvalue estimation using different number of samples
T I I I

120
[
100
—— Ground truth
—&— Sample Num:10*
80F Sample Num:10° .
o —e— Sample Num:10? '
T
c 60
()
(@)
2
40+
20+
0 5aee°9 " ! L
0 10 20 30 40 50

The index of eigenmode in ascending order -



2. The eigenvalues are not collectively manipulated
toward greater discrimination

X = AlululT + )\ngu; + -+ )\dudug

A Class 1 Class 2

}\VL ﬁ P
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Proposed method

Let’s do a data-dependent “eigenvalue massage”

Class 1 Class 2

by adjustment

25



Proposed method

We propose “Discriminative Covariance Representation”

X =UAUT
A = diag(M\1, -+, A\g)

[ \ [ ok \

)\32 ()42)\2

\ "o \ " et

Power-based adjustment Coefficient-based adjustment

26



Proposed method

«-adjusted S-Divergence:

e Power-based adjustment

d

- X,+Y, 1

S(X,,Y,) ZlogA( i >§Zai(log>\i(X)—|—log)\i(Y))
=1

* Coefficient-based adjustment

d
-~ X.+Y. 1
S(X.,Y.) Zlog)\ ( 1l > 5 Z (2log vy + log A (X)) + log \;(Y))

=1

Discriminative Stein kernel (DSK)

ka(X,Y) = exp (=0 - S (X, Y))

27



Proposed method

How to learn the optimal adjustment parameter o?
* Kernel Alignment based method
e Class Separability based method

* Radius-margin Bound based Framework

Discriminative Stein kernel (DSK)

ka(X,Y) = exp (=0 - S (X, Y))

28



Experimental Result

Data sets

 Brodatz texture  FERET face

a B
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 ETH-80 object  ADNI rs-fMRI

I
-

O




Experimental Result

(©) 23 vs. 27
e S

{

89

20 58 vs.

3

'(n)TZ VS. 62-‘>

The most difficult 15 pairs of Brodatz texture data set 30



COMPARISON OF CLASSIFICATION ACCURACY (IN PERCENTAGE)

BRODATZ TEXTURE DATA SET

ON EACH OF THE 15 MOST DIFFICULT PAIRS FROM

Experimental Result

Index ] 2 3 4 5 6 7 3

SK 62.50 67.19 68.75 75.000 75.78 75.79 76.56| 77.34
DSK-KA, | 70.31] 73.44 75.00 81.25 76.56 79.69 82.81 79.69
Index 9 10 11 12 13 14 15 Avg.
SK 78.13] 79.69 80.47 81.25 82.04 83.59 85.94 76.6
DSK-KA, | 84.37 84.39] 84.38 84.38 84.35 84.42 87.50| 80.85

The most difficult 15 pairs of Brodatz texture data set

31




Discussion

DSK vs. eigenvalue estimation improvement methods

Table 1: Comparison of average classification accuracy (in percentage) between DSK
and the methods of improving eigenvalue estimation.

Data n/Dim | sample| [1] [2] [3] DSK
Cov.
Brodatz 1,024/5 | 78.01 | 77.50 | 78.00 | 78.00 | 83.40
~205 | £+ + + + +

0.43 0.41 0.43 0.48 0.58
FERET 98,304/4379.70 | 78.10 | 79.70 | 79.68 | 84.60
= + + + + +
2286 3.10 2.98 3.10 3.10 1.71
ETHS80 16,384/ 80.30 | 78.80 | 80.30 | 80.31 | 82.70

~ 4 4 4 + +
3276 0.79 0.89 0.82 0.59 1.05

fMRI 130/90 | 54.88 | 54.88 | 56.10 | 56.10 | 59.76
~ 1.44

[1] X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using their
sample estimates,” IEEE Trans. Inf. Theory, vol. 54, pp. 5113-5129, Nov. 2008.

[2] B. Efron and C. Morris, “Multivariate empirical Bayes and estimation of covariance matrices,” Ann.
Stat., vol. 4, pp. 22-32, 1976.

[3] A. Ben-David and C. E. Davidson, “Eigenvalue estimation of hyper-spectral Wishart covariance matrices

from limited number of samples,” IEEE Trans. Geosci. Remote Sens., vol. 50, pp. 4384-4396, May 2012.
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* Our research work
— Discriminatively Learning Covariance Representation
— Exploring Sparse Inverse Covariance Representation
— Moving to Kernel-matrix-based Representation (KSPD)

— Learning KSPD in deep neural networks
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Introduction

Applications with high dimensions but small sample issue
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Small sample 10~ 300
High dimensions 50 ~ 400
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Introduction

This results in singular covariance estimate, which adversely
affects representation.

How to address this situation?

Data + Prior knowledge

Explore the underlying structure of visual features

35



Proposed SICE representation

Structure sparsity in skeletal human action recognition
* Only a small number of joints are directly linked.
* How to represent such direct links?

Sparse Inverse Covariance Estimation
(SICE)

.



Proposed SICE representation

Assume xgx1 ~ N (u, )

Z 1 . partial correlation of x; and x; (for direct link)

Perform SICE by maximizing penalized log-likelihood

S* = argmax log (det(S)) — trace(CS) — A[|S|1]

where C 1s sample-based covariance matrix

|S||1 imposes the structure sparsity

(Convex, solved by Graphical Lasso, 0.014 CPU second for S190x100)



Proposed SICE representation

Properties of SICE representation:
* is guaranteed to be nonsingular
* reduces over-fitting, giving more reliable representation

* Measures the partial correlation, allowing the sparsity
prior to be conveniently imposed

S* = arg tax log (det(S)) — trace(CS) — A|[S|]1]

38



Application to Skeletal Action Recognition

ozh-LA |

ozz-rz ||

(a) “Crouch or hide” action

from MSRC-12 data set. (b) Proposed SICE-RP
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Application to Skeletal Action Recognition

Table 1: Comparison on HDMOS5 data set
(Two experiments).

14 classes All classes

Methods in comparison Accuracy Accuracy
Cov-J4-SVM 82.5 Not reported
RSR 76.1 Not reported
RSR-ML 81.9 40.0
CDL 79.8 Not reported
Cov-RP 91.5 58.9
InverseCov-RP 91.5 58.9
SICE-RP (proposed) 96.8 67.6

Table 1: Comparison on MSR-DailyActivity3D data set.

Table 2: Comparison on MSRC-12 data

set.

Methods in comparison | Accuracy
Cov-J4-SVM 89.8
Hierarchy of Cov3DlJs 91.7
Cov-RP 89.2
InverseCov-RP 89.2
SICE-RP (proposed) 92.5

Methods in comparison | Accuracy
Moving Pose 73.8
Local HON4D 80.0
Actionlet Ensemble 86.0
SNV 86.3
Cov-J2,-SVM 75.0
Cov-RP 85.0
InverseCov-RP 35.0
SICE-RP (proposed) 93.1




Application to other tasks

The principle of 'Bet on sparsity"

Table 1: Comparison of classification performance on object classification data sets.
Brodatz FERET  ETHS80

Methods (texture) (face) (object)
Cov-RP 81.2 81.0 94.0
InverseCov-RP s1.2 31.0 94.0

SICE-RP (proposed) 81.5 83.1 94.1

b {S2

A @
¢ I W
2 A

"

‘x
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* |Introduction on Covariance representation

* Our research work
— Discriminatively Learning Covariance Representation
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Introduction

Again, look into Covariance representation
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Introduction

Again, look into Covariance representation

Y=g (@ ) - )

] t-th feature J-th feature
5 - = - X; € Rd
o X ol LI L s Lot it Lk e N B
d 2D- - E h X‘z Ml e b l...hll_lll_l_.l [¥77 | Illi‘u' wls
25 = r :
* n Xn ] T Y| BT S I Y T

fi f; >
n—1 +vn—1

Just a linear kernel function!
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Introduction

Covariance representation

< f; f; >
Cij = : .
n—1 vn-—1
Resulting issues:
 Only modeling linear correlation of features.

* Asingle, fixed representation form.

* Unreliable or even singular covariance estimate.

45



Proposed kernel-matrix representation

Let’s use a kernel matrix instead

f‘ f °
Ci' — ? ’ ]
j <\/n_1 N 1> Covariance

! !

Mij = <§b(fz), ¢(f])> _— Ii(fi, fj) SPD Matrix!

Advantages:
* Model nonlinear relationship between features;

* For many kernels, M is guaranteed to be nonsingular, no matter
what the feature dimensions and sample size are.

* Maintain the size of covariance representation and the
computational load.

46



Application to Skeletal Action Recognition

= @
: 4 . {
T Y - -
& J 1 @ & SO %o 1
P ) 11’ S So g <3 v
[ / ©® II f {f |/
,| f { I | f
y. | J 1 i [}
T F7 Ty 7
I | f I
4 P & d {
¢ % $ $ ¢

Comparison on MSR-Action3D data set. Comparison on MSR-DailyActivity3D data set.

Methods in comparison Accuracy Methods in comparison Accuracy
Pose Set [25] 90.0 Moving Pose [31] 73.8
Hierarchy of Cov3DJs [10] 90.5 Local HON4D [13] R0.0
Moving Pose [31] IL.7 Actionlet Ensemble [26] |  86.0
Lie Group [24] 92.5 SNV [29] 86.3
SNV [29] 93.1 —
Spatiotemp. Features Fusing [37] 94.3 COV‘I}P | V] &7;:8
CovRP L] 0 EOY_RIZ{ I;SOLM o d 96.9
Cov-J1;-SVM 7] S04 er-RP- (proposed) :
Ker-RP-POL (proposed) 96.2 Ker-RP-RBF (proposed) 96.3
Ker-RP-RBF (proposed) 96.9
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Application to Skeletal Action Recognition

Comparison on HDMO5 data set (Two experiments).

® ®
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14 classes All classes
Methods in comparison Accuracy Accuracy
CDL [27] 79.8 Not reported
RSR [¥] 76.1 Not reported
RSR-ML [6] 81.9 40.0
Cov-RP [27] 91.5 58.9
Cov=-077-SVNMT7] 8275 =
Ker-RP-POL (proposed) 93.6 64.3
Ker-RP-RBF (proposed) 96.8 66.2

*The result of Cov-J7,-SVM [7] is not obtained in 35 hours.

Comparison on MSRC-12 data set.

Methods in comparison Accuracy
Hierarchy of Cov3DJs [10] 91.7
Cov-RP [27] 89.2
Cov-J3-SVM [7] 89.2
Ker-RP-POL (proposed) 90.5
Ker-RP-RBF (proposed) 92.3
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Application to Object Recognition

Comparison on object classification data sets.

Brodatz FERET  ETHS0
Methods (texture) (face) (object)
Cov-RP [22] 81.2 81.0 94.0
Ker-RP-POL (proposed) 77.9 82.4 93.8
Ker-RP-RBF (proposed) 84.9 85.4 94.8

A
- =
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Application to Deep Learning Features

Comparison on MIT Indoor Scenes Data Set
(Classification accuracy in percentage)
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Discussion

SICE vs. Kernel matrix: which is better?

Table 1: Comparison between SICE-RP and Kernel representation.

Data set Cov-RP SICE-RP Ker-RP-RBF
MSRC-12 89.2 92.5 92.3
HDMOS5 (14 classes) 91.5 96.8 96.8
HDMOS5 (100 classes) 58.9 67.6 66.2
MSR-Action3D 74.0 96.5 96.9
MSR-DailyActivity3D 85.0 93.1 96.3
Brodatz 81.2 81.5 84.9
FERET 81.0 83.1 85.4
ETHS0 94.0 94.1 94.8
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Discussion

SICE vs. Kernel matrix representation: which is better?

Table 1: Comparison between SICE and Kernel representation.

Criterion Cov-RP SICE-RP Ker-RP
Robust to small sample & high di- | X N4 A
mensionality

Prior knowledge incorporation X 4 vV
Guaranteed to be SPD X 4 Vv
Linear technique v/ N4 X
Flexibility X X Vv
Free of parameter tuning A X X

52
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Covariance representation

Integration with Deep Learning

CNN stream A

chestnut
—sided
warbler

‘#"”—#*'

CNN stream B

3000000000000406060C

softmax

[ 000000000000009000000000009

. i bilinear vector
convolutional + pooling layers

Bilinear CNN Models for Fine-grained Visual Recognition, Lin et al, ICCV2015



Covariance representation

Integration with Deep Learning

X - f'll) SVD Z L
e N o
S~ Y
X X X - X X, = log(X"X+el) X

0 1 I I+

Matrix Backpropagation for Deep Networks with Structured Layers,
lonescu et al, ICCV2015



Covariance representation

Integration with Deep Learning

MxNxD DxD DxD DxD DxD ) k
\ Bilinear log(A) lincar
. sgnsqri(A L2norm(A +
CNN /Xi pooling or A gnsqri(A) ) softmax
) ———— >
Class

n
Image Convolutional activations (Z ) + el Normalization layers
— scores

Improved Bilinear Pooling with CNN, Lin and Maji, BMVC2017



Covariance representation

Integration with Deep Learning

X Y p (U.A) 2% Q

ol ol ol 0Ol ol
0X oP oU’ oA 0Q

MPN-COV layer

I
I
I
I

Is Second-order Information Helpful for Large-scale Visual Recognition?,
Li et al., ICCV2017



Proposed DeepKSPD

Motivation

o The kernel-matrix-based SPD representation
« has not been developed upon deep local descriptors
« has not been jointly learned via deep learning

o Existing matrix backpropagation for learning covariance-
representation via deep networks
o encounters numerical stability issue



Proposed DeepKSPD

Architecture and layers

_________________________________________________________________________________________

I ]
VGG-16 Conv5_4 Vol L=2 KSPD lécr)g Upper Batch | [ FC‘ Softmax E
: : Norm root Tri Norm . |
| ' |}
. Vo '
I Lo b
! Vo b
I Lo b
! Lo b 7
I i | L -
| w | | 'y ’
' eee ' o
l T ) h : : + : —
| | U ! ]
' d | | : )
: ! Lo H
|

I Vo -
| I U : ]
| I U '
! D bl
| I U ' ]
| | | : \ J

___________________________________________________________________________________________

Local Descriptors KSPD Representation Classification
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Proposed DeepKSPD

Matrix backpropagation

| | ! |
- KSPD : E\‘rj’g Upper Batch | 1 FC  Softmax E
0 roo i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Classification
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Proposed DeepKSPD

Matrix backpropagation

H = f(K) on the kernel matrix K

K =UDU" H=UfD)U"

9J3 0Jy
oK © OH :



Proposed DeepKSPD

Existing matrix backpropagation

)('ll)

~
X X = X X, =log(X"X+el) X

X
0 1 | I+

Matrix Backpropagation for Deep Networks with Structured Layers, lonescu et al, ICCV2015

(16)
1
where K = UDUT { Gij = (A — /\j)_li when © # j and zero otherwise; Agiqgq

means the off-diagonal entries of A~ ure all set to zeros; and Agym is defined to

represent (A + AT)/2.




Proposed DeepKSPD

Result from the literature of Operator Theory (1951)

Theorem 1 (pp.60, [20]) Let My be the set of d x d real symmetric matrices. Let
I be an open interval and My(I) s the set of all real symmetric matrices whose
eigenvalues belong to I. Let C1(I) be the space of continuously differentiable real
functions on I. Every function f in C1(I) induces a differentiable map from A
in Mg(l) to f(A) in Mg. Let Dfa(-) denote the derivative of f(A) at A. It is a

linear map from My to itself. When applied to B € My, Dfa(-) is given by the

Daleckii-Krein formula as

0],
6)-]3 . (—.)H
_\ . T T ( o
7% DfA(B)—U(Go<U BU )U | (11)

where A = UDUT is the eigen-decomposition of A with D = diag(\,---, \g).

and o is the entry-wise product. The entry of the matriz G 1s defined as

iy |

1
(Ai)—F(Aj) . i
7 f '()\,L-)., otherwise. i

20. Bhatia, R.: Positive Definite Matrices. Princeton University Press (2015)



Proposed DeepKSPD

Existing matrix backpropagation (ionescu et al, IcCv2015)

(_)]3 ~ T (.)]4 -1 T (_?]4 T
— ) YO
U{(Go <HU ((.)H>smeloh(D)>) + (D (U U » U’

0K
(16)

where K = UDUT ; gij = (Ni = A\j)7t when i # j and zero otherwise; Agiag

means the off-diagonal entries of A are all set to zeros; and Agym s defined to

represent (A + AT) /2.

Proposed matrix backpropagation

Fxi)—Ff(x;) .
Jii = X, 2 Gf Ni # N
] f'(N\:), otherwise.

()]3 . T (_)]_1 T

What is their relationship?



Proposed DeepKSPD

Generalise to matrix a-rooting normalisation

MxNxD DxD DxD DxD DxD ) k
i linear
Bilinear log(A)

. sgnsqri(A L2norm(A +
X;  pooling or A1z gnsqriA) &) softmax

D, oo
T1 2 ~=/|:(>

Image Convolutional activations A = H Z XiXiT) + el Normalization layers Class
n\= scores
X ( ) P I _7\ ( ;7 (U A) ) (  """,' Q
o com || 2L B (oL ALy el fFC |
X OP ouU’ oA Q

MPN-COV layer

f(A) = A% mmp %tfa%((%)T[U(log(D)oDo‘)UTD



Experimental Result

Fine-grained Image Recognition

Indoor



Table 1. Comparison of Methods

Experimental Result

Fine-grained Image Recognition

ACC (%) MIT indoor Cars Aircraft Birds Average
Symbiotic Model [29] 78.0 72.5

FV-revisit [30] 82.7 80.7

FV-SIFT [27] 59.2  [61.0 18.8

FC-VGG [21] 67.6 36.5 45.0 61.0 2.5
FV-VGG [28] 73.7 75.2 72.7 71.3 73.1
FV-VGG-ft [21] - 85.7  |78.7 74.7 73.1
COV-VGG 74.2 %0.3 81.4 76 78.0
KSPD-VGG (proposed) 77.2 83.5 83.8 78.5 80.1
BCNN [13] 77.6 91.3 86.0 84.1 84.5
Improved BCNN [12] — 92.0 88.5 85.8 —
CBP [14] 76.17 - - 84.0 -
LRBP [11] - 90.9 87.93 84.2 -
KP [17] - 92.4 86.9 86.2 -
DeepKSPD-logm (proposed) 79.6 90.5 91.5 84.8 86.6
DeepKSPD-rootm (proposed) 81.0 93.2 91.0 86.5 87.9




Experimental Result

Numerical stability of backpropagation

Comparison of Matrix Gradients in MIT Indoor Dataset
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Experimental Result

DeepKSPD vs DeepCOV

ACC (%) MIT  |Cars Aircraft |Birds
indoor
Improved — 92.0 88.5 85.8
BCNN [12]
DeepCOV- |79.2 91.7 88.7 85.4
rootm
DeepKSPD-|81.0 93.2 91.0 86.5

rootm




Experimental Result

Ablation study
* Learning width 0 in the GRBF kernel
* Learning o in matrix a-rooting normalisation

ACC (%) [MIT lars Aircraft |Birds
indoor

Initial 6 0.1 0.1 0.1 0.1

Initial « 0.5 0.5 0.5 0.5

Final 6 0.63 1.4 0.67 0.93

Final o« 0.49 0.52 0.53 0.52




Research trends on learning SPD representation

 Compactness of second-order feature representation &
Computational efficiency

e Efficient training of SPD structural layers by considering the
underlying manifold structure

* Second-order correlation across layers
 Deeply integrated into convolutional neural networks

 More applications explored
 Generic and Fine-grained image recognition
* Image segmentation, Person reidentification and retrieval
* Action parsing & analysis, Image super-resolution
* More to be explored...



Conclusion

Discriminative Stein kernel to address two issues in
covariance representation

SICE representation to incorporate structure sparsity

Kernel matrix representation to move beyond linear, fixed
covariance representation

End-to-end deep learning of KSPD representation
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An archive website

saimunur.github.io

SPD Archive

SPD Representations Methods Archive

A public directory for the state-of-the-art symmetric positive definitive (SPD) representation methods publised or proposed
in recent years and their results on the common fine-grained image benchmark datasets.

Introduction

Fine-grained image classification (FGIC) is one of the most challenging and active research area of computer vision. Recently,
symmetric positive definitive (SPD) matrix-based visual representation methods have shown promising performance in FGIC.
This page keeps track of the recent advances in SPD matrix-based visual representation methods for FGIC. Kindly refer to
the contact section if you have any gueries or sugesstions.

Common fine-grained image datasets

Caltech-UCSD Birds-200-2011

Number of categories: 200, Number of images: 11,788
Annotations per image: 15 Part Locations, 312 Binary Attributes, 1 Bounding Box

Project Page | Direct Download link 8 :={G7 0ol (T8 Original Paper

https://saimunur.github.io/spd-archive/



https://saimunur.github.io/spd-archive/
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