Exploring the Granularity of Sparsity in Convolutional Neural Networks

Huizi Mao¹, <u>Song Han</u>¹, Jeff Pool², Wenshuo Li³, Xingyu Liu¹, Yu Wang³, William J. Dally^{1,2}

Stanford University¹, NVIDIA², Tsinghua University³

Models are Getting Larger

Dally, NIPS'2016 workshop on Efficient Methods for Deep Neural Networks

Stanford University

The Challenge: Model Size

Hard to distribute large models through over-the-air update

Our Previous Work: Pruning Neural Networks

[Han et al. NIPS'15]

Trained Quantization

Huffman Coding

Exploring the Granularity of Sparsity that is Hardware-friendly

Pruning Algorithm

lgorithm 1: Pruning Deep Neural Networks	
Initialization: $W^{(0)}$ with $W^{(0)} \sim N(0, \Sigma)$.	
Hyper-parameter: threshold, step.	
$\mathbf{Output}: W^{(t)}.$	
——————————————————————————————————————	
while not converged do	
$W^{(t)} = W^{(t-1)} - \eta^{(t)} \nabla f(W^{(t-1)}; x^{(t-1)});$	
t = t + 1;	
end	
Prune Connections —	
// initialize the mask by thresholding the weights.	
Mask = 1(W > threshold);	
$W = W \cdot Mask;$	
Retrain Weights —	
while not converged do	
$W^{(t)} = W^{(t-1)} - \eta^{(t)} \nabla f(W^{(t-1)}; x^{(t-1)});$	
$W^{(t)} = W^{(t)} \cdot Mask;$	
t = t + 1;	
end	
Iterative Pruning	
threshold = threshold - step;	
goto Pruning Connections;	

Coarse Grain Pruning Saves Index

Figure 5: Illustration of index saving.

Accuracy ~ Sparsity ~ Granularity

X-axis: sparsity of convolution layers (percentage of zero weights). Y-axis: top-5 accuracy on ImageNet validation set.

Fine-grain Pruning: remove 80% weights (no loss of accuracy) 2-D Pruning: remove 65% weights (no loss of accuracy)

=> Although we are able to remove less #weights, we get better regularity, SIMD friendly

Prediction Accuracy Comparison

(under the same density)

Model	Density	Granularity	Top-5
		Kernel Pruning (2-D)	79.20%
AlexNet	24.8%	Vector Pruning (1-D)	79.94%
		Fine-grained Pruning (0-D)	80.41%
		Kernel Pruning (2-D)	89.70%
VGG-16	23.5%	Vector Pruning (1-D)	90.48%
		Fine-grained Pruning (0-D)	90.56%
		Kernel Pruning (2-D)	88.83%
GoogLeNet	38.4%	Vector Pruning (1-D)	89.11%
		Fine-grained Pruning (0-D)	89.40%
		Kernel Pruning (2-D)	92.07%
ResNet-50	40.0%	Vector Pruning (1-D)	92.26%
		Fine-grained Pruning (0-D)	92.34%
		Kernel Pruning (2-D)	91.56%
DenseNet-121	30.1%	Vector Pruning (1-D)	91.89%
		Fine-grained Pruning (0-D)	92.21%

Stanford University

Storage Ratio Comparison

(under the same prediction accuracy)

Model	Top-5 Accuracy	Granularity	Density	Storage Ratio
		Kernel Pruning (2-D)	37.8%	39.7%
AlexNet	80.3%	Vector Pruning (1-D)	29.9%	34.5%
		Fine-grained Pruning (0-D)	22.1%	33.0%
	90.6%	Kernel Pruning (2-D)	44.4%	46.9%
VGG-16		Vector Pruning (1-D)	30.7%	35.8%
		Fine-grained Pruning (0-D)	27.0%	40.6%
GoogLeNet	89.0%	Kernel Pruning (2-D)	43.7%	51.6%
		Vector Pruning (1-D)	36.9%	47.4%
		Fine-grained Pruning (0-D)	32.3%	48.5%
ResNet-50	92.3%	Kernel Pruning (2-D)	61.3%	77.0%
		Vector Pruning (1-D)	40.0%	52.7%
		Fine-grained Pruning (0-D)	37.1%	55.7%
DenseNet-121	91.9%	Kernel Pruning (2-D)	35.5%	48.9%
		Vector Pruning (1-D)	31.1%	43.8%
		Fine-grained Pruning (0-D)	26.6%	39.8%

Coarse Grain Pruning doesn't Impact Quantization

Figure 6: Three curves are almost identical, indicating sparsity structure does not impact quantization.

Coarse Pruning Helps SCNN Architecture

A simplified dataflow of SCNN architecture. With coarse grained pruning, bypass is possible when the same output address is referenced again. Reduce memory access.

Reduce #Memory Reference

Table 3: Output memory references for VGG-16 (convolutional layers only).

Density	Fine-grained (0-D)	Vector Pruning (1-D)	Relative # of memory references
40.1%	1.77B	1.23B	69.5%
33.1%	1.53B	1.03B	67.2%
27.5%	1.33B	0.87B	65.3%

Comparison with Previous Work

		NIPS'15	NIPS'16	Fine-grained	Vector	Kernel
Layer	Param.	[7]	[8]	Pruning	Pruning	Pruning
				(ours)	(ours)	(ours)
conv1	35K	84%	54%	83%	83%	83%
conv2	307K	38%	41%	26%	26%	26%
conv3	885K	35%	28%	23%	23%	23%
conv4	664K	37%	32%	23%	23%	23%
conv5	443K	37%	33%	23%	23%	23%
fc6	38M	9%	3.7%	7%	7%	7%
fc7	17M	9%	6.6%	7%	7%	7%
fc8	4M	25%	4.6%	18%	18%	18%
Total	61M	11%	5.7%	8.4%	8.4%	8.4%
FLOPs	1.5B	30%	25.4%	24.1%	24.1%	24.1%
Storage(conv)	2.3MB	55.6%	48.3%	36.4%	28.0%	25.5%
Storage(total)	61MB	16.7%	8.5%	12.6%	12.3%	12.2%
#Mem Reference	99M	74.4%	71.7%	60.5%	34.6%	35.2%
Top-5 Accura	су	80.23%	80.01%	80.41%	79.94%	79.20%

Stanford University